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Abstract

The dependence of the dynamics of pulse-coupled neu-
ral networks on random rewiring of excitatory and in-
hibitory connections is examined. When both excitatory
and inhibitory connections are rewired, periodic synchro-
nization emerges with a Hopf-like bifurcation and a sub-
sequent period-doubling bifurcation; moreover, chaotic
synchronization is also observed. When only excita-
tory connections are rewired, periodic synchronization
emerges with a saddle-node-like bifurcation, and chaotic
synchronization is also observed. This result suggests
that randomness in the system does not necessarily con-
taminate the system, and sometimes randomness even
introduces rich dynamics to the system such as chaos.

1 Introduction

With respect to the variability of the network structure,
the Watts-Strogatz (WS) network, which is obtained by
randomly rewiring the connections of locally connected
regular networks, has been attracting considerable atten-
tion (Watts & Strogatz, 1998; Strogatz, 2001). When the
probability of rewirings is appropriately small, the WS
network has small-world network properties, namely, a
small average shortest path length and a large clustering
coefficient. Such properties are often observed in social
networks, Internets, gene networks as well as neural net-
works (Strogatz, 2001). Roles of network topology on
synchronization in nonlinear oscillators were well exam-
ined (Barahona & Pecora, 2002; Hong, Choi, & Kim,
2002; Hagberg & Schult, 2008). The synchronization in-
duced by a small number of rewiring implies that signals
are transmitted effectively in networks. Small-world net-
work properties are considered important especially in
the brain where efficient signal transmission should be

achieved even when the volume of axon wiring is limited
to some ratio of the brain size (Buzsáki, 2006). Syn-
chronization in a rewired network composed of neuronal
models intensively studied with the leaky integrate-and-
fire model (Masuda & Aihara, 2004; Netoff et al., 2004;
Roxin, Riecke, & Solla, 2004), the Hodgkin-Huxley-type
model (Lago-Fernández et al., 2000; Buzsáki et al., 2004;
Netoff et al., 2004, Kitano & Fukai, 2007), and the phase-
neuron model (Kanamaru & Aihara, 2010). Some of
those studies report that rewiring of the network connec-
tions yields periodic synchronization or random synchro-
nization. However, the values of the optimal rewiring
probability depends on the model, and they are not nec-
essarily in the small-world region.

In our previous study, we analyzed the dynamics of a
network of excitatory and inhibitory neurons and exam-
ined the dependence of the degree of synchronization on
the rewiring probability p of the network (Kanamaru &
Aihara, 2010). When p = 1, the network is randomly
connected and it shows synchronous firing when the val-
ues of the parameters of the network are appropriately
chosen (Kanamaru & Aihara, 2008). This result is con-
sistent with that of Brunel’s study (Brunel, 2000). It was
also found that there exists a transition probability p0

at which the synchronous firing emerges, and p0 depends
on the connections strength in the network. When p0 is
in the small-world region (i.e., 0.01 < p0 < 0.1), the fir-
ing rate of the network was much larger than biologically
plausible values. On the other hand, when p0 is far from
the small-world region, complex dynamics as well as pe-
riodic dynamics were found in the network. However,
we did not examine this complex dynamics in details. In
the present paper, we clarify that rewiring connections
of the network can give rise to chaotic dynamics in our
network.

Chaos is random motion which obeys deterministic
rules. Chaotic dynamics in neural systems is observed
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both in single neurons in vitro such as the squid gi-
ant axon (Matsumoto et al., 1984; Aihara et al., 1986)
and the onchidium giant neuron (Hayashi et al., 1982)
and in models of single neurons (Aihara, Matsumoto,
& Ikegaya, 1984; Feudel et al. 2000; Varona et al.,
2001). Chaotic dynamics was also observed in models
of pulse-coupled neural networks (van Vreeswijk & Som-
polinsky, 1996; Tsuda et al., 2004; Kanamaru & Sekine,
2005b; Kanamaru, 2006, 2007; Kanamaru & Aihara,
2008). Moreover, it was suggested by modeling studies
that chaotic dynamics is useful in some neural computa-
tions such as escape from local minima in optimization
problems and chaotic transitions among memory states
in associative memory models (Aihara et al., 1990; In-
oue & Nagayoshi, 1991; Nara & Davis, 1992; Tsuda,
1992; Adachi & Aihara, 1997; Uchiyama & Fujisaka,
2004; Kanamaru, 2007). Some experimental studies re-
ported that chaos also exists in biological neural net-
works such as the olfactory bulb of anesthetized rabbits
(Freeman, 1987), but, to our knowledge, the number of
such reports is few. It would be partly because the de-
tection of chaos in a noisy high-dimensional dynamical
system is difficult. Another reason would be the lack of
understanding of chaos in high-dimensional dynamical
systems. Therefore, it is often difficult to judge whether
irregular dynamics is chaotic or not. As for the irregu-
larity in biological neural networks, it is shown that the
firing of cortical single neurons is highly irregular, and
it is discussed whether this irregularity is generated by
nonlinear dynamics or stochastic mechanism (Softky &
Koch, 1993; Shadlen & Newsome, 1994). Moreover, it is
known that spontaneous neural population activity dur-
ing slow-wave sleep, anesthesia, and quiet wakefulness
fluctuates between up state and down state (MacLean
et al., 2005; Hoffman et al., 2007; Poulet & Petersen,
2008). Particularly, MacLean et al. (2005) proposed
that the concept of attractor, i.e., deterministic mecha-
nism can be used to understand the convergence of the
observed dynamics to the up state. It is also known that
the spontaneous cortical activity in the absence of exter-
nal sensory input fluctuates among cortical states, many
of which correspond closely to orientation maps (Kenet
et al., 2003). The mechanism of such experimental obser-
vations has not been fully understood, but the random
nature of chaos based on deterministic mechanism might
relate to them. Therefore, it would be important to es-
tablish the detection method of chaos and understand
the mechanism of chaos for noisy high-dimensional dy-
namical systems like neural networks.

This paper is organized as follows. We first define a
network composed of excitatory and inhibitory neurons
and random rewiring of connections in section 2. In an
E&I-rewiring network, both excitatory and inhibitory
connections are rewired whereas in an E-rewiring net-
work, only excitatory connections are rewired. The ef-
fect of rewiring in the E&I-rewiring network is examined
in section 3. By rewiring the connections, both periodic
synchronization and chaotic synchronization are found.

When the ensemble-averaged dynamics of the system has
temporal structure, we call such firing as synchronous fir-
ing. Moreover, when such temporal structure is periodic
or chaotic, we call such dynamics as periodic synchro-
nization and chaotic synchronization, respectively. It
was observed that the periodic synchronization emerges
with a Hopf-like bifurcation. Similar results are also
found in the E-rewiring network treated in section 4,
but, in this case, the periodic synchronization emerges
with a saddle-node-like bifurcation. In section 5, the case
without chaos is discussed. Discussions and conclusions
are provided in section 6.

2 Network of excitatory and in-

hibitory neurons

In the present study, we analyze the chaotic dynamics
of the networks composed of excitatory and inhibitory
neurons defined by Kanamaru & Aihara (2010). In this
section, we give a brief explanation of the network. For
the detailed definition, please see Appendix A.

A pulse-coupled neural network composed of exci-
tatory and inhibitory neurons are arranged in a two-
dimensional array. An excitatory neuron and an in-
hibitory neuron are placed at the lattice points (i, j)
(1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny) in the array, and both
the number of neurons in the excitatory ensemble and
that in the inhibitory ensemble are NxNy. We set the
values of the parameters so that the resting potentials of
all the neurons are stable, i.e., they do not emit spikes
without inputs. In order to generate spikes, we inject
Gaussian white noise with the intensity D to each neu-
ron. In the following, E and I denote the excitatory and
inhibitory ensembles, respectively. There are four types
of chemical synapses, namely, E ← E, I ← E, E ← I,
and I ← I, and we set the strength of E ← E and I ← I
synapses as gint, and the strength of I ← E and E ← I
as gext. Moreover, we introduce electrical synapses with
gap junctions between inhibitory neurons (I ← I) based
on the physiological observations (Galarreta & Hestrin,
2001), and we set its strength as ggap. Recently, the
existence of axo-axonal gap junctions between excita-
tory neurons is discussed (Traub et al., 1999; Munro &
Börgers, 2010), but we have not introduced this effect in
the present study.

In the limit of NE, NI → ∞ where NE = NI = NxNy,
this model with random connections, or the network with
the rewiring probability p = 1 can be analyzed with
the Fokker-Plank equation (Kanamaru & Sekine, 2005b;
Kanamaru, 2006, 2007; Kanamaru & Aihara, 2008). By
analyzing the Fokker-Plank equation using the Fourier
expansion, we found various bifurcations that generate
synchronous firing in the network (Kanamaru & Aihara,
2008). In the present paper, we analyze the dynamics of
the network with p ≤ 1.

Let us consider neurons in the ensemble Y which give
connections by chemical synapses to a neuron at (i, j)
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in the ensemble X , where X, Y = E or I. A
(i,j)
cXY is

defined as a set of indices of such neurons. #A
(i,j)
cXY is

the number of elements of this set. For simplicity, we
use the symmetric connections, namely, if (s, t) ∈ A

(i,j)
cXY ,

then (i, j) ∈ A
(s,t)
cY X holds. Similarly, A

(i,j)
g denotes the

set of indices of inhibitory neurons which give electrical
synapses to the inhibitory neuron at (i, j). The sets of
indices for connections A

(i,j)
cXY and A

(i,j)
g are defined as

follows. First, we define a set A(i,j)(p, k), where p is the
probability of the rewiring of connections and k scales
the connection length. For p = 0, A(i,j)(0, k) is defined
as a set of indices for local connections, namely,

A(i,j)(0, k) =
{

(m, n)
∣∣∣∣1 ≤ d(i, j, m, n) ≤ k

2

}
,(2.1)

d(i, j, m, n) = |i − m| + |j − n|, (2.2)

where connections in both directions exist between two
neurons at (i, j) and (m, n), and a periodic boundary
condition is applied. The L1 norm instead of the L2

norm is used for simplicity. We think the usage of the
L2 norm would not affect the following results because
the definition of d(i, j, m, n) is used only for the network
with local connections (p = 0), and its effect will decrease
with the increase of rewired connections. The number of
elements can be calculated as #A(i,j)(0, k) = k(k+2)/2.
By rewiring the connections of A(i,j)(0, k) with the prob-
ability p, A(i,j)(p, k) is obtained. The algorithm to ob-
tain A(i,j)(p, k) is explained in Appendix B. A(i,j)(p, k) is
fixed during each simulation. The connections through
the electrical synapses are always considered to be lo-
cal, namely, A

(i,j)
g = A(i,j)(0, k). The rewiring is first

introduced to the connections by the chemical synapses
from the excitatory neurons, namely, A

(i,j)
cXE = A(i,j)(p, k)

(X = E, I). Generally, the connections from the in-
hibitory neurons are considered to be local, but recently,
a possible role for inhibitory neurons with long-range
connections is explored (Buzsáki et al., 2004). There-
fore, this research considers two networks, namely, the
E&I-rewiring network in which the rewiring is also in-
troduced to the connections by the chemical synapses
from the inhibitory neurons as

A
(i,j)
cXI = A(i,j)(p, k) (X = E, I), (2.3)

and the E-rewiring network in which the connections by
the chemical synapses from the inhibitory neurons are
local as

A
(i,j)
cXI = A(i,j)(0, k) (X = E, I). (2.4)

In the following, a network with Nx = Ny = 100 and
k = 14 is used. In our previous study, the dependence
of synchronization on gext was analyzed in the global
network that corresponds to our model with p = 1 and
it was found that the synchronous firing exists only in
certain ranges of gext (Kanamaru & Aihara, 2008). It
was also found that periodic synchronous firing appears
in the rewired network with p ≤ 1 (Kanamaru & Aihara,

2010). This network is sparse because the number of
connections to the neuron at (i, j) is calculated to be
#A(i,j)(0, 14) = 112.

In the literature of small-world networks, the struc-
tural property of a network is often measured by the av-
erage shortest path length L(p) and the clustering coeffi-
cient C(p) defined in Appendix C. Note that C(p) takes
large values when the probability that three neurons are
interconnected is large. In this network, L(p) and C(p)
can be numerically calculated to be L(p)/L(0) ∼ 0.4
and C(p)/C(0) > 0.7 in the range 0.01 ≤ p ≤ 0.1;
therefore, the network exhibits small-world properties,
namely, small L(p) and large C(p) (Watts & Strogatz,
1998; Strogatz, 2001) in this range. L(p) and C(p) mono-
tonically decrease with the increase of p similarly to those
of WS model. In our previous study, we found that the
synchronous firing emerges at a transition probability p0,
and the value of p0 depends on the connections strength
of the network (Kanamaru & Aihara, 2010). When p0 is
in the small-world network region, the firing rate of the
network becomes much larger than biologically plausible
values. When p0 is far from the small-world network re-
gion, chaos-like dynamics as well as periodic dynamics
were also found in the network. In the following, we fo-
cus on the chaos-like dynamics observed in our network.

3 Effect of rewiring on synchro-

nization in the E&I-rewiring
network

In the following, the parameters are set to ggap = 0.10,
gint = 5, gext = 3.3, and D = 0.004 so that this network
shows synchronous firing for p = 1 (Kanamaru & Aihara,
2008). Figure 1 shows the firing of neurons in the E&I-
rewiring network with p = 0.3 and p = 0.8. The firing
for p = 0.3 in Figures 1B and 1D shows that there is
little correlation in the firing of neurons. Note that the
firing of each neuron is stochastic because this firing is
induced by noise ξ

(i,j)
X (t). The firing rates JE and JI of

the excitatory and inhibitory ensemble are defined as an
average instantaneous firing rate of neurons, namely,

JX(t) ≡ 1
NxNyw

∑
(i,j)

∑
l

Θ(t − t
(i,j)
l ), (3.1)

Θ(t) =
{

1 for 0 ≤ t < w
0 otherwise , (3.2)

where t
(m,n)
l denotes the lth firing time of the neuron at

(m, n) in the ensemble Y and is defined by the time at
which θ

(m,n)
Y exceeds π, and w = 1. In the following, we

apply a low-pass filter with the cutoff frequency fc = 1
2π

to JE and JI twice in order to obtain smooth functions
before observation. JE and JI for p = 0.3 are shown in
Figures 1A and 1C, respectively, and fluctuation around
each equilibrium is observed. This fluctuation means
that there is little correlation among the firing times of
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Figure 1: The firing of neurons in the E&I-rewiring network for p = 0.3 ((A)-(E)) and p = 0.8 ((F)-(J)) with
Nx = Ny = 100, k = 14, ggap = 0.10, gint = 5, gext = 3.3, and D = 0.004. (A), (C), (F), (H) Temporal changes in
the firing rates JE and JI of the excitatory and inhibitory ensemble. (B), (D), (G), (I) Corresponding raster plots
of the firing of neurons. The firing of 30 neurons among 10000 neurons in each ensemble is shown. The index of
the neuron at (i, j) is calculated as jNx + i. (E), (J) The spatial firing pattern of neurons in the two-dimensional
array. The positions of inhibitory neurons which fire within a time window of width 0.5 are plotted. The firing of
the inhibitory neurons is shown because the spatial contrast is clearer than that of the excitatory neurons.

neurons. In Figure 1E, the spatial firing pattern of the
neurons in the two-dimensional array is shown. It is
observed that the clusters of firing appear stochastically.

On the other hand, as shown in Figures 1G and 1I,
there are some correlations in the stochastic firing of
neurons, and the ensemble-averaged values of JE and JI

temporally and coherently changes. We refer to such fir-
ing as synchronous firing in the following. Moreover,
when such temporal structure is periodic or chaotic,
we call such dynamics as periodic synchronization and
chaotic synchronization, respectively. To clarify how
synchronous firing emerges, the dependence of JE peaks
on p is plotted in Figure 2C. For p < 0.4, the peaks of JE

keep small values because the dynamics of the network
fluctuates around an equilibrium on the (JE , JI) plane
as shown in Figure 2A. Such dynamics corresponds to
asynchronous firing of neurons. On the other hand, for
p > 0.4, the peaks of JE become larger, and the dy-

namics of JE has developed structure shown in Figure
2B. Moreover, this structure would be chaotic as shown
below.

Figures 3A and 3B show the power spectra P (f) of
JE with several peaks for p = 0.6 and 0.8, respectively.
As p increases from small values, a peak height of P (f)
starts to increase at a critical p; we call the frequency of
this peak f1. Then f1/2 is defined as the frequency which
takes a peak of P (f) around f1/2. In this case, f1 	 0.07
and f1/2 	 0.035. P (f) has very sharp peaks like δ
function for periodic synchronization as shown in Figure
3A, but, when chaos-like dynamics exists in the system,
it has somewhat broader peaks as shown in Figure 3B;
therefore, we cannot directly compare the values of peaks
of P (f) for different p in order to quantify the power
of the peak at frequency f . For comparison, a sum of
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Figure 2: The dependence of the dynamics in the E&I-
rewiring network on the rewiring probability p for gext =
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0.3 and p = 0.8. (C) Plot of peak values of JE . (D) The
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p. (E) Dependence of the sum of nonlinearity on p.

powers is defined as

Psum(f) =
∫ fM

fm

P (f ′)df ′, (3.3)

where fm < fM , P (fm) = P (fM ) = P (f)/2 and for
∀f ′ ∈ (fm, fM ), P (f ′) > P (f)/2. The dependence of
Psum(f1) and that of Psum(f1/2) on p are shown in Fig-
ure 2D. As p increases, the sum of powers at f1 and the
amplitude of JE start to increase at p 	 0.4. In other
words, after the emergence of periodic synchronization,
JE peak increases with the increase of the bifurcation
parameter. This phenomenon is similar to the supercrit-
ical Hopf bifurcation. To confirm the similarity of this
process to the Hopf bifurcation, we also examined the
dependence of the frequency fmax that maximizes P (f)
on p. As shown in Figure 4, around p 	 0.4, fmax takes
almost constant values (fmax 	 0.08), i.e., the system
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Figure 3: Power spectra P (f) of JE in the E&I-rewiring
network for (A) p = 0.6 and (B) p = 0.8.

has a periodic component even when a stable limit cycle
does not exist (see also Figure 1A). This situation is also

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  0.2  0.4  0.6  0.8  1
p

f 1

f max

f 1/2

Figure 4: The dependence of the frequency fmax that
maximizes P (f) on p.

similar to the Hopf bifurcation, at which the real part
of the complex conjugate eigenvalues λ ± ωi (ω �= 0) at
the equilibrium takes zero. We cannot conclude, how-
ever, that this bifurcation is a Hopf bifurcation because
our network is governed by stochastic differential equa-
tions. Therefore, we call this bifurcation as a Hopf-like
bifurcation in the following. For p ≥ 0.6, fmax some-
times takes the values around 0.04, which is similar to a
period-doubling bifurcation. As shown in Figure 2D, the
sum of power at f1/2 starts to increase at p 	 0.58, and
this would correspond to a period-doubling bifurcation
point. Successive period-doubling bifurcations might ex-
ist for larger values of p, but we could not detect it be-
cause of fluctuations in the network.

In the following, we examine whether chaotic syn-
chronization exists in the network, using the nonlin-
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ear prediction method based on reconstruction of the
inter-synchronization interval (ISI) data Ti (Aihara &
Tokuda, 2002), which is summarized in Appendix D. In
this method, we use surrogate data defined as alternate
data sets generated from the original data set, which are
widely used for hypothesis testing in nonlinear time se-
ries analysis (Theiler et al., 1992; Sauer, 1994; Suzuki,
et al., 2000; Shinohara et al., 2002; Kanamaru & Sekine,
2005a; Hirata et al., 2008). In general, to use surro-
gate data for hypothesis testing, a null hypothesis is set.
Based on this null hypothesis, specific characteristics of
the ISI are preserved, while others are randomized to
generate surrogates. In the following analysis, we use
the random shuffled (RS) surrogate data and the am-
plitude adjusted Fourier transformed (AAFT) surrogate
data, which correspond to the null hypothesis that the
observed ISIs are independent and identically distributed
random process and that of a linear stochastic process
observed through a monotonic nonlinear function, re-
spectively. The nonlinear prediction error ENP (h) for
the prediction step h is calculated for three data, namely,
the original data, the RS surrogate data, and the AAFT

surrogate data. If ENP (h) of the original data is sig-
nificantly different from those of RS and AAFT surro-
gate data, the null hypothesis on independent and iden-
tically distributed random process and that on a linear
stochastic process observed through a monotonic nonlin-
ear function can be rejected for the original data, and it
can be concluded that there is some possibility that the
original time series has deterministic structure, such as
a strange attractor. On the other hand, when there is
no significant difference between the original data and
the surrogate population, we do not reject the null hy-
potheses of this surrogate. In such a case, we charac-
terize the dynamics of the original data based on the
behavior of ENP (h) and return plot of Ti (see below),
such as a random walk around a stable equilibrium, a
noisy limit cycle whose period is stochastically fluctuat-
ing, etc. Figure 5 shows the dependence of ENP (h) on
the prediction step h for the time series obtained from
the network with the rewiring probabilities p = 0.3, 0.54,
0.6, and 0.8. The ENP (h) for the original time series are
shown with solid lines, and mean values for 100 sam-
ples of surrogate data (RS and AAFT) are also shown
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with filled and open circles with their standard devia-
tions, respectively. As shown in Figure 5A, ENP (h) for
p = 0.3 takes values close to 1, meaning that determinis-
tic prediction is difficult in this time series. Moreover, for
p = 0.3, ENP (h) of the original data is not significantly
different from those of AAFT surrogate data; therefore,
the null hypothesis cannot be rejected and this dynamics
can be regarded as a linear stochastic process observed
through a monotonic nonlinear function. Similarly, the
result of the original data for p = 0.54 in Figure 5B is
not significantly different from those of AAFT surrogate
data; therefore, the null hypothesis cannot be rejected
and this dynamics can also be regarded as such a linear
stochastic process. In this case, it is observed that the
return plot on the (Ti, Ti+1) plane fluctuates around a
single point; therefore, we regard this dynamics as peri-
odic synchronization (i.e., Ti 	 Ti+1) whose fluctuations
are regarded as a linear stochastic process. It is observed
that ENP (h) for p = 0.6 shown in Figure 5C takes small
values because the deterministic prediction is easy due
to the existence of the periodic structure with two cy-
cles as shown in the return plot on the (Ti, Ti+1) plane.
Moreover, also in this case, ENP (h) of the original data
is not significantly different from those of AAFT surro-
gate data. Therefore, we regard this dynamics as noisy
periodic synchronization with two cycles whose fluctua-
tions are regarded as a linear stochastic process. Note
that the dynamics is generated by the period-doubling
bifurcation at p 	 0.58 (see Figure 2D). ENP (h) for
p = 0.8 shown in Figure 5D also takes small values, but
is significantly different from those of RS and AAFT sur-
rogate data. Therefore, the null hypothesis on a linear
stochastic process observed through a monotonic non-
linear function can be rejected for this time series with
p = 0.8, and it can be concluded that there is some
possibility that the original time series has determinis-
tic structure. It should be noted that ENP (h) increases
with the increase of the prediction step h in Figure 5D. In
other words, the information about initial conditions is
rapidly lost. Moreover, the return plot on the (Ti, Ti+1)
plane approximately shows a one-dimensional unimodal
structure. From these observations, we conclude that
the network rewired with p = 0.8 shows chaotic synchro-
nization.

To judge whether the time series has chaotic proper-
ties, we define the sum of nonlinearity Nsum as

Nsum =
10∑

h=1

Θ(EAAFT
NP (h) − σAAFT (h) − ENP (h)),

(3.4)

Θ(x) =
{

x (x ≥ 0)
0 (x < 0) , (3.5)

where EAAFT
NP (h) and σAAFT (h) are the mean nonlinear

prediction error and standard deviation of AAFT sur-
rogate data, respectively. Note that large Nsum implies
that the existence of nonlinear deterministic structure
because ENP (h) is significantly different from that of

AAFT surrogate data. The dependence of Nsum on the
rewiring probability p is shown in Figure 2E. Nsum takes
large values for p > 0.6, and there is some possibility that
the network shows chaotic synchronization in this range.

4 Effect of rewiring on synchro-
nization in the E-rewiring net-

work

In the previous section, the effect of rewiring the E&I-
rewiring network was examined. Although inhibitory
neurons also have long-range connections in neural sys-
tems (Buzsáki et al., 2004), it is often thought that the
long-range connections are mainly excitatory. Therefore,
we examine herewith the effect of rewiring on synchro-
nization in the E-rewiring network. Similarly to the
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Figure 6: The dependence of the dynamics in the E-
rewiring network on the rewiring probability p for gext =
3.3. (A), (B) Trajectories on the (JE , JI) plane for p =
0.7 and p = 0.84. (C) Plot of peak values of JE . (D) The
dependence of the sum of powers around f1 and f1/2 on
p. (E) Dependence of the sum of nonlinearity on p.
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E&I-rewiring network (Figure 2), periodic synchroniza-
tion emerges at p 	 0.78 and chaotic synchronization
emerges at p 	 0.84 in the E-rewiring network as shown
in Figure 6. The transition probability p of rewiring
is larger than that in the E&I-rewiring network be-
cause the rewiring number in the E-rewiring network
is smaller. Moreover, the transition to periodic synchro-
nization takes place abruptly at p0 = 0.7639 as shown
in Figure 6C, and this suggests that the bifurcation that
yields periodic synchronization is different from that of
E&I-rewiring network. We further investigate this bi-
furcation.

For p < p0, JE converges to a stationary value after
spending a transient time interval Tc with the periodic
behavior as shown in Figure 7. Note that we set the

 0

 0.05

 0.1

 0.15

 0.2

 0  100  200  300  400  500
t

JE

p=0.72

T  =280c

Figure 7: A temporal change of JE for p = 0.72 in the
E-rewiring network. JE converges to a stationary value
after spending a transient time interval Tc with the pe-
riodic behavior.

initial phases of all the neurons randomly in the range
[0, 2π]. Some neurons whose internal states are close to
but less than the threshold π would fire immediately af-
ter the start of our simulation. Then the network shows
transient synchronization during the time interval Tc.
We call Tc the converging time in the following discus-
sion. Such an evolution is often observed when the pe-
riodic solution is generated by a saddle-node bifurcation
of a stable limit cycle and an unstable limit cycle (Ott,
1993). The dependence of the averaged converging time
〈Tc〉 over 10 samples on p is shown in Figure 8. The
relationship

〈Tc〉 ∝ (p0 − p)−1/2 (4.1)

is observed which is typical to the saddle-node bifur-
cation (Ott, 1993); therefore, the transition to periodic
synchronization would be realized by the saddle-node bi-
furcation.

For p > p0, chaotic synchronization is also observed
in the E-rewiring network (see Figure 6E) although its
range is narrower than that of the E&I-rewiring net-
work.
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 10000
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p −p0

<T  >

(p −p)0
−0.5

c 

Figure 8: The dependence of the averaged converging
time 〈Tc〉 on the rewiring probability p. The average
was calculated over 10 samples.

5 Transition without chaos

In sections 3 and 4, the connection strength between ex-
citatory and inhibitory ensembles is set to gext = 3.3,
and we observed the rewiring-induced chaotic synchro-
nization both in the E&I-rewiring network and in the
E-rewiring network. Similarly, there are transitions to
the synchronized state without chaos depending on the
values of the parameters of the network.

In this section, we set gext = 3.2, which is the value
mainly used in our previous study (Kanamaru & Ai-
hara, 2010), and we observe the dynamics of the network.
Figures 9 and 10 show the dependence of the dynamics
on the rewiring probability p in the E&I-rewiring net-
work and that in the E-rewiring network, respectively.

In each network, the power spectrum does not have
a peak at f1/2 as shown in Figures 9D and 10D; there-
fore, the period-doubling bifurcation does not take place
when gext = 3.2 in these networks. Moreover, the sum of
nonlinearity fluctuates around zero as shown in Figures
9E and 10E; therefore, chaotic dynamics is not observed
in the time series obtained from these network.

The reason for this difference of the dynamics is be-
cause chaos in our network depends on both p and gext.
Figure 11 shows the dependence of the chaotic structure
on p and gext. Each inset shows the return plot (Ti, Ti+1)
of the ISI (see also Figure 5). It is observed that chaos
(or unimodal structure) exists when both p and gext are
large. When p becomes large, the ISI Ti tends to become
long (data not shown). On the other hand, when gext

becomes large, the ISI Ti tends to become short. There-
fore, for large p and gext, a competition for the length of
ISI takes place, then the period-doubling and generation
of chaos will take place.

In summary, we found both the rewiring-induced
chaotic synchronization (Sections 3 and 4) and the
rewiring-induced periodic synchronization (Section 5).
Those dynamical properties of the network are deter-
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Figure 9: The dependence of the dynamics in the E&I-
rewiring network on the rewiring probability p for gext =
3.2. (A), (B) Trajectories on the (JE , JI) plane for p =
0.3 and p = 0.8. (C) Plot of peak values of JE . (D) The
dependence of the sum of powers around f1 and f1/2 on
p. (E) Dependence of the sum of nonlinearity on p.

mined both by the rewired network structure and by the
connection strength gext.

6 Discussion and conclusions

The dependence of the dynamics of pulse-coupled neu-
ral networks composed of both excitatory and inhibitory
neurons on random rewiring of connections was exam-
ined. The network in which both excitatory and in-
hibitory connections are rewired is called the E&I-
rewiring network, while the network in which only excita-
tory connections are rewired is called the E-rewiring net-
work. In the E&I-rewiring network, when the rewiring
probability p is increased from 0, a Hopf-like bifurca-
tion takes place and periodic synchronous firing appears.
When p is increased further, a period-doubling bifur-
cation and chaotic synchronization are observed. In
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Figure 10: The dependence of the dynamics in the E-
rewiring network on the rewiring probability p for gext =
3.2. (A), (B) Trajectories on the (JE , JI) plane for p =
0.7 and p = 0.84. (C) Plot of peak values of JE . (D) The
dependence of the sum of powers around f1 and f1/2 on
p. (E) Dependence of the sum of nonlinearity on p.

the E-rewiring network, when p is increased from 0, a
saddle-node-like bifurcation and chaotic synchronization
are observed. When a different value of the connection
strength was used, chaos does not necessarily appear,
and, in such cases, only periodic synchronization ap-
pears. It is because that both the rewiring probability
and the connection strength act as bifurcation parame-
ters in our network. These results are observed in the
network in which each neuron has both the long-range
and short-range connections. We have confirmed that
the similar results are also observed in the network in
which each neuron has either long-range or short range
connections (Buzsáki et al., 2004) (data not shown).
Therefore, the observed phenomenon would be robust
against the change of the network structure.

To detect the chaotic structure in the network, we
used the inter-synchronization intervals of the ensemble-
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Figure 11: The dependence of the chaotic structure on p and gext. Each inset shows the return plot (Ti, Ti+1) of
the ISI. It is observed that chaos (or unimodal structure) exists when both p and gext are large.

averaged instantaneous firing rate, and the nonlinear
prediction method based on reconstruction. Particularly,
the sum of nonlinearity defined using the difference be-
tween the prediction error of the original data and that
of the AAFT surrogate data successfully took large val-
ues when low-dimensional unimodal structure of chaos
exists in the system. The ensemble-averaged statistics
that reflect dynamics of an assembly of neurons such as
the field potential are often used in experimental stud-
ies; therefore, our method might give a simple method
to detect hidden structure of chaos in high-dimensional
neural networks. Recently, in experimental studies, ir-
regular firing of single neurons (Softky & Koch, 1993;
Shadlen & Newsome, 1994), spontaneous fluctuation be-
tween up state and down state of the neural population
activity (MacLean et al., 2005; Hoffman et al., 2007;
Poulet & Petersen, 2008), and dynamical state-changes
in cortical networks (Kenet et al., 2003) were found. Al-
though the mechanisms of such dynamics have not been
fully understood, it would be interesting to perform non-
linear analysis of chaos for such experimental data in real
neurons and neural networks.

In this paper, chaos emerged when connections of the
network are rewired. This phenomenon would be im-
portant because the network topologies are attracting
considerable attention in neuroscience because they re-
late to effective transmission of information in the brain
(Buzsáki, 2006). It is also noticeable that similar con-
figurations of connections might be realized by regulat-
ing connection strengths in the network according to
some learning rules, such as Hebbian rule, STDP (Bi
& Poo, 2001), short-term synaptic plasticity with fa-
cilitation and depression (Markram et al., 1998; Wang
et al., 2006), synaptic modulation by acetylcholine (Sal-
gado et al., 2007; Kruglikov et al., 2008), and so on. In
other words, the well-known advantages of chaos such
as escape from local minima in optimization problems
and chaotic transitions among memory states in associa-
tive memory models (Aihara et al., 1990; Inoue & Na-
gayoshi, 1991; Nara & Davis, 1992; Tsuda, 1992; Adachi
& Aihara, 1997; Uchiyama & Fujisaka, 2004; Kanamaru,
2007) might be realized as a result of such synaptic plas-
ticity and learning in neural networks.

In our network, there are two kinds of randomness,
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namely, noise added to each neuron and random rewiring
of connections. Both act as bifurcation parameters to
yield chaotic synchronization, in which each neuron fluc-
tuates because of noise, but the ensemble-averaged dy-
namics can show deterministic chaos. This result sug-
gests that rewiring-induced randomness in the system
does not necessarily contaminate the system, and some-
times it even introduces rich dynamics to the system such
as chaos. It has already been known that the rewiring
can induce periodic or chaotic synchronization in some
networks (Barahona & Pecora, 2002; Hong, Choi, &
Kim, 2002; Hagberg & Schult, 2008), but the periodic
or chaotic dynamics in such networks were determined
mainly by the dynamics of each element. In our model,
chaos is a property of the rewired network because each
neuron has a stable equilibrium and shows neither peri-
odic nor chaotic oscillation when it is disconnected from
the other neurons.

Recently, it was reported that the existence of noise
can generate chaos in some nonlinear systems with mul-
tiple elements (Kanamaru & Sekine, 2005b; Kanamaru,
2006, 2007; Ichiki, Ito, & Shiino, 2007; Kanamaru &
Aihara, 2008). In such systems, the behavior of each el-
ement is noisy, but by averaging the dynamics of many
elements, chaos can emerge. Similarly, it is known that
chaos also emerges by introducing variability to some
nonlinear systems such as cutting the connections in an
associative network (Nara & Davis, 1992), co-evolution
of phases and connection weights in coupled phase oscil-
lators (Aoki & Aoyagi, 2009), and so on. The rewiring-
induced chaos observed in the present paper would give
a new possible scenario to generate chaos in neural sys-
tems.
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A Definition of the Network

A pulse-coupled neural network composed of excitatory
and inhibitory neurons arranged in a two-dimensional
array is considered. An excitatory neuron and an in-
hibitory neuron are placed at the point (i, j) (1 ≤ i ≤
Nx, 1 ≤ j ≤ Ny) in the array, and both the number
of neurons in the excitatory ensemble and that in the
inhibitory ensemble are NxNy. The dynamics of the in-
ternal states θ

(i,j)
E of the excitatory neuron as well as

θ
(i,j)
I of the inhibitory neuron at (i, j), is written as

τX
˙

θ
(i,j)
X = (1 − cos θ

(i,j)
X ) + (1 + cos θ

(i,j)
X )

×(rX + ξ
(i,j)
X (t) + gXEI

(i,j)
XE (t) − gXII

(i,j)
XI (t)

+ggapδXII
(i,j)
gap (t)), (A.1)

I
(i,j)
XY (t) =

1

2#A
(i,j)
cXY

∑
(m,n)∈A

(i,j)
cXY

∑
l

1
κY

exp

(
− t − t

(m,n)
l

κY

)
, (A.2)

I(i,j)
gap (t) =

1

#A
(i,j)
g

∑
(m,n)∈A

(i,j)
g

sin
(
θ
(m,n)
I (t) − θ

(i,j)
I (t)

)
, (A.3)

〈ξ(i,j)
X (t)ξ(m,n)

Y (t′)〉 = DδXY δimδjnδ(t − t′), (A.4)

where X = E or I, and δij is Kronecker’s delta (Er-
mentrout, 1996; Izhikevich, 1999; Kanamaru & Aihara,
2008). Each neuron is modeled by the theta neuron (Er-
mentrout, 1996), which is known as a general model of
type-I neuron (Izhikevich, 1999); therefore, the dynam-
ics of our network would also be observed in networks
of other type-I neurons. Although the number of excita-
tory neurons in the cortex is much larger than that of in-
hibitory neurons, we set both the numbers to be identical
for simplicity. As shown in equations A.2 and A.3, the
synaptic weights are divided by the number of connected
neurons; therefore, the dynamics of the network does not
depend on the number of neurons if there is a sufficiently
large number of neurons. Connections through chemical
synapses are modeled by the postsynaptic potential with
an exponential function, and electrical synapses with gap
junctions based on physiological observations (Galarreta
& Hestrin, 2001) are introduced to the connections be-
tween the inhibitory neurons. Electrical synapses cor-
respond to the diffusive coupling in physical systems;
therefore, synchronization in the neural system can be
induced (Ermentrout, 2006). I

(i,j)
XY denotes the inputs

by chemical synapses from the ensemble Y to the neu-
ron at (i, j) in the ensemble X . A

(i,j)
cXY denotes a set of

indices at which there is a neuron in the ensemble Y ,
which connects to the neuron at (i, j) in the ensemble
X . #A

(i,j)
cXY is the number of elements of this set. t

(m,n)
l

denotes the lth firing time of the neuron at (m, n) in the
ensemble Y and is defined by the time at which θ

(m,n)
Y

exceeds π. I
(i,j)
gap (t) is the input by electrical synapses.

A
(i,j)
g denotes the set of indices at which there is a neu-

ron that connects to the target neuron through electrical
synapses. rX denotes the parameters of the neurons in
ensemble X . Without Gaussian white noise ξ

(i,j)
X (t) and

input I
(i,j)
XY , a single neuron shows self-oscillation when

rX > 0. When rX < 0, on the other hand, this neuron
becomes an excitable system with the following stable
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equilibrium:

θ0 = − arccos
1 + rX

1 − rX
, (A.5)

where θ0 approaches zero when rX → 0. In the liter-
ature of synchronization in neural systems, many au-
thors examined the synchronization of excitatory oscil-
lators (Mirollo & Strogatz, 1990; Kuramoto, 1991; Ab-
bott & van Vreeswijk, 1993; Tsodyks, Mitkov, & Som-
polinsky, 1993; Hansel, Mato, & Meunier, 1995; van
Vreeswijk, 1996; Sato & Shiino, 2002) or inhibitory os-
cillators (van Vreeswijk, Abbott, & Ermentrout, 1994;
Wang & Buzsáki, 1996; White et al., 1998; Golomb &
Hansel, 2000; Lewis & Rinzel, 2003; Nomura, Fukai, &
Aoyagi, 2003). However, in the present study, we set
rE = rI = −0.025, and we consider the dynamics of net-
works composed of excitable neurons only. Our neuron
model stays on the stable equilibrium when the noise
intensity D is set to zero, irrespective of the values of
the connections strength gXY and ggap because there is
no firing. When D > 0 and gXY = ggap = 0, each
neuron in our network shows stochastic firing, which is
neither periodic nor chaotic. When D > 0, gXY �= 0,
and ggap �= 0, the firing of neurons in our network is
typically asynchronous. However, when the values of D,
gXY , and ggap are appropriately chosen and when the
network is sufficiently rewired as explained below, syn-
chronous firing appears.

For simplicity, the parameters are set as gEE = gII ≡
gint and gEI = gIE ≡ gext. The time constants of the
internal dynamics and the synaptic transmission are set
to τE = 1, τI = 0.5, κE = 1, and κI = 5.

B Algorithm to obtain A(i,j)(p, k)

In this section, the algorithm to obtain the rewired con-
nection A(i,j)(p, k) from the local connections A(i,j)(0, k)
is explained. From N#A(i,j)(0, k) connections in the
network of N neurons, Np#A(i,j)(0, k) connections are
selected randomly (N = NE = NI). Let us assume
that the connection from the neuron at (s, t) to that
at (i, j) is selected, i.e., (s, t) ∈ A(i,j)(0, k). After se-
lecting a new neuron at (u, v) that is not included in
A(i,j)(0, k) randomly, (s, t) is removed from A(i,j)(0, k)
and (u, v) is added to A(i,j)(0, k). Then, in order to
keep the symmetric connections, (i, j) is removed from
A(s,t)(0, k) and added to A(u,v)(0, k). With this pro-
cedure, a set A(i,j)(p, k) of rewired connections to the
neuron at (i, j) is obtained.

C Definition of L(p) and C(p)

In this section we define the average shortest path length
L(p) and the clustering coefficient C(p).

The shortest path length between two neurons is the
minimum number of synapses to pass for one neuron
to reach to another one, and by averaging it over the
network, L(p) is obtained.

Next, to define C(p), we define the local clustering
coefficient Ci(p). We count the number ei of pairs of
inter-connected neurons which also are connected to the
ith neuron. Using the number ki of neurons that connect
to the ith neuron, Ci(p) is defined as

Ci(p) =
2ei

ki(ki − 1)
. (C.1)

By averaging Ci(p) over all the neurons, C(p) is ob-
tained.

D Nonlinear prediction based on
reconstruction

In this section, the nonlinear prediction method based
on reconstruction of dynamics is summarized (Theiler et
al., 1992; Sauer, 1994; Suzuki, et al., 2000; Shinohara
et al., 2002; Kanamaru & Sekine, 2005a; Hirata et al.,
2008). With the kth peak time tk of the firing rate of an
excitatory ensemble, the inter-synchronization interval
(ISI) is defined as

Tk = tk+1 − tk. (D.1)

Let us consider an ISI sequence {Tk} and the delay co-
ordinate vectors Vj = (Tj−m+1, Tj−m+2, . . . , Tj) with
the reconstruction dimension m, and let L be the num-
ber of vectors in the reconstructed phase space Rm.
For a fixed integer j0, we choose l = βL (β < 1)
points that are nearest to the point Vj0 and denote them
by Vjk

= (Tjk−m+1, Tjk−m+2, . . . , Tjk
)(k = 1, 2, . . . , l).

With {Vjk
}, a predictor of Tj0 for h steps ahead is de-

fined as

pj0(h) =
1
l

l∑
k=1

Tjk+h. (D.2)

With pj0(h), the normalized prediction error (NPE) is
defined as

ENP (h) =
〈(pj0 (h) − Tj0+h)2〉1/2

〈(〈Tj0〉 − Tj0+h)2〉1/2
, (D.3)

where 〈·〉 denotes the average over j0. When the em-
bedded vector Vj has structure such as a strange attrac-
tor, we say that the system has deterministic structure.
Note that a periodic solution where the firing rate of
the network oscillates with an average interval T is re-
garded as a stochastic process around T ; hence it does
not have deterministic structure. A small value of NPE
i.e., less than 1, implies that the ISI sequence has de-
terministic structure behind the time series because this
algorithm is based on the assumption that the dynami-
cal structure of a finite-dimensional deterministic system
can be well reconstructed by the delay coordinates of ISI
(Sauer, 1994). However, stochastic time series with large
auto-correlations can also take NPE values less than 1.
Therefore, we could not conclude that there is determin-
istic structure only from the magnitude of NPE.
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To confirm the deterministic structure, the values of
NPE should be compared with those of NPE for a set
of surrogate data (Theiler et al., 1992). The surrogate
data are new time series generated from the original
time series under some null hypotheses so that the new
time series preserve some statistical properties of the
original data. In the present study we use two kinds
of surrogates, namely, random shuffled (RS) and am-
plitude adjusted Fourier transformed (AAFT) surrogate
data which correspond to the null hypothesis of an in-
dependent and identically distributed random process
and that of a linear stochastic process observed through
a monotonic nonlinear function, respectively. To make
AAFT surrogate data, we used TISEAN 3.0.1 (Hegger,
Kantz, & Schreiber, 1999; Schreiber & Schmitz, 2000). If
the values of NPE for the original data are significantly
smaller than those of NPE for the surrogate data, the
null hypothesis is rejected, and it can be concluded that
there is some possibility that the original time series has
deterministic structure.
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