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Abstract The nonlinear prediction method based on

the interspike interval (ISI) reconstruction is applied to

the ISI sequence of noisy pulse trains and the detection of

the deterministic structure is performed. It is found that

this method cannot discriminate between the noisy pe-

riodic pulse train and the noisy chaotic one when noise-

induced pulses exist. When the noise-induced pulses are

eliminated by the grouping of ISI sequence with the ge-

netic algorithm, the chaotic structure of the chaotic fir-

ings becomes clear, and the noisy chaotic pulse train

could be discriminated from the periodic one.

1 Introduction

To quantify the chaotic properties of a dynamical sys-

tem, the largest Lyapunov exponent is often calculated,

and, when it takes a positive value, the system has a sen-

sitive dependence of the initial condition and its dynam-

ics is regarded as chaotic. To calculate the Lyapunov ex-

ponent, the differential equation or the map which gov-

erns the time-evolution of the system must been known.

In the field of dynamical systems, it is well-known that

the state of a finite-dimensional dynamical system could

be reconstructed only from a single time series using

delay-coordinate vectors, and these vectors give the in-

formation about the original dynamical system. How-

ever, the simple estimation of Lyapunov exponents based

on the reconstruction often leads to wrong results be-

cause the experimentally obtained time series are short

and noisy.

In neural systems, a series of spikes emitted from

neurons with regular or irregular time intervals can be
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experimentally observed. In such a system, an interspike

interval sequence is thought to give some information

about the neuronal networks, and the reconstruction of

the dynamical system from the interspike interval se-

quences is performed by several authors (Theiler et al.

1992; Sauer 1994; Suzuki et al. 2000; Shinohara et al.

2002). Also in such a situation, the effects of noise of-

ten lead to wrong results, so careful treatments would

be required.

In the present paper, the nonlinear prediction method

(Theiler et al. 1992; Sauer 1994; Suzuki et al. 2000; Shi-

nohara et al. 2002) based on the interspike interval (ISI)

reconstruction is applied to noisy pulse trains, and the

detection of the deterministic structure is performed in

order to establish a method for the detection of chaotic

structures in noisy pulse trains. Based on those results,

the dynamical states of the system are discriminated.

The present paper is organized as follows. In Sect.2,

a pulse neural network which yields noisy periodic pulse

trains is defined. This model is composed of the canon-

ical models for class 1 neurons and its mechanism of

couplings has a general exponential form. Thus, similar

pulse trains are expected to be observed also in biologi-

cal neuronal systems. In Sect.3, the nonlinear prediction

method is introduced. And the nonlinear prediction is

applied to the interspike interval sequences of noisy pulse

trains in Sect.4, and it is found that this method can-

not discriminate between noisy periodic pulse trains and

noisy chaotic ones. This is because noise-induced pulses

exist. In Sect.5, the grouping of the ISI sequence with

the genetic algorithm to eliminate noise-induced pulses

is applied, and the discrimination between noisy peri-

odic pulse trains and noisy chaotic ones is performed.

In Sect.6, the properties of this method is summarized.

Conclusions and discussions are given in the final sec-

tion.

2 Pulse neural network and noisy pulse trains

In this paper, we perform the detection of chaotic struc-

tures in noisy pulse trains from a single neuron. For that

purpose, we define a model to generate noisy pulse trains

in this section.

Let us consider the globally connected active rotators

composed of excitatory neurons θ(i)
E (i = 1, 2, · · · , NE)

and inhibitory neurons θ(i)
I (i = 1, 2, · · · , NI) written as

˙
θ
(i)
E = 1− a sin θ(i)

E + ξ
(i)
E (t) + IEE(t)− IEI(t), (1)

˙
θ
(i)
I = 1− a sin θ(i)

I + ξ
(i)
I (t) + IIE(t)− III(t), (2)

IXY (t) =
gXY

NY

NY∑
j=1

∑
k

1
κY

exp

(
− t− t

(j)
k

κY

)
, (3)

where a is a system parameter, IXY (t) is the interaction

from the ensemble Y to the ensemble X , and X,Y = E

or I (Kanamaru and Sekine 2003, 2004, 2005). Note that

ξ
(i)
E (t) and ξ

(i)
I (t) are Gaussian white noises satisfying

〈ξ(i)
X (t)ξ(j)

Y (t′)〉 = DδijδXY δ(t− t′), (4)

where D is the noise intensity and δij is Kronecker’s

delta.
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Fig. 1 The raster plots of the firing times of the system with NE = NI = 20000. a Random firings for D = 0.3, b synchronized

periodic firings for D = 0.007, and c synchronized chaotic firings for D = 0.012. The connection strengths are fixed at gext = 3.3

and gint = 4.5. The neurons are aligned so that the excitatory neurons are in the range 0 ≤ i < 20000 and the inhibitory

neurons are in the range 20000 ≤ i < 40000.

For a > 1, the active rotator shows typical proper-

ties of an excitable system, namely, it has a stable equi-

librium θ0 ≡ arcsin(1/a) and − sin θ(i) + 1/a shows a

pulse-like waveform with an appropriate amount of dis-

turbance. Note that a single active rotator can be trans-

formed into the canonical model θ̇ = (1 − cos θ) + (1 +

cos θ)r for class 1 neurons (Ermentrout, 1996; Izhikevich,

1999). Thus, our synaptically connected active rotators

might reflect the dynamics of networks of class 1 neurons

such as Connor model or Morris-Lecar model (Ermen-

trout, 1996).

The neurons are connected with the exponential func-

tion written by (3) where t
(j)
k is the k-th firing time

(k = 1, 2, · · ·) of the j-th neuron in the ensemble Y .

Note that the second sum in (3) is taken over k satisfy-

ing t > t
(j)
k , and the firing time is defined as the time

when θ
(j)
Y turns around over the value 3π/2 which is

the point located at the opposite side of the stable equi-

librium point θ0 = arcsin(1/a) ∼ π/2. To reduce the

parameters, we set gEE = gII ≡ gint, gEI = gIE ≡ gext,

a = 1.03, and κE = κI = 1.

This pulse neural network shows various firings de-

pending on the coupling strengths and the noise inten-

sity D. As shown in Fig.1a, when D is large, neurons

fire without correlations. And, with the decrease of D,

synchronized periodic firings or synchronized chaotic fir-

ings appear as shown in Figs.1b and c. In the large NE

and NI limit, it is confirmed that the average behav-

ior of chaotic firings in Fig.1c has positive Lyapunov

exponent by analyzing the Fokker-Planck equations of

the system (Kanamaru and Sekine 2003, 2004, 2005).

As stated above, a single active rotator can be regarded

as a canonical model for class 1 neurons, and the mech-

anism of couplings (3) has a general exponential form.

Thus, similar dynamics might be observed also in bio-

logical neuronal systems.
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Let us consider a task to detect chaotic structures in

a pulse train from a single neuron in this network. If one

can observe the average behavior of the system, the syn-

chronization in the system, like Fig.1c, can be analyzed,

and the detection of chaos would be easier. However,

it is not obvious whether the chaotic structure in the

network can be detected in a time series from a single

neuron. In the following sections, we apply the nonlin-

ear prediction based on the ISI reconstruction to pulse

trains from a single neuron, and perform the detection

of chaotic structures.

3 Nonlinear prediction based on ISI

reconstruction

In this section, the nonlinear prediction method based

on the ISI reconstruction is summarized (Sauer 1994 ;

Theiler et al. 1992 ; Suzuki et al. 2000; Shinohara et al.

2002). With the k-th firing time tk of a single neuron,

the ISI is defined as

Tk = tk+1 − tk. (5)

Let us consider an ISI sequence {Tk} and the delay coor-

dinate vectors Vj = (Tj−m+1, Tj−m+2, · · · , Tj) with the

reconstruction dimension m, and let L be the number

of vectors in the reconstructed phase space Rm. For a

fixed integer j0, we choose l = βL (β < 1) points that

are nearest to the point Vj0 and denote them by Vjk
=

(Tjk−m+1, Tjk−m+2, · · · , Tjk
)(k = 1, 2, · · · , l). With {Vjk

},

a predictor of Tj0 for h steps ahead is defined as

pj0(h) =
1
l

l∑
k=1

Tjk+h. (6)

With pj0(h), the normalized prediction error (NPE) is

defined as

ENP (h) =
〈(pj0(h)− Tj0+h)2〉1/2

〈(〈Tj0 〉 − Tj0+h)2〉1/2
, (7)

where 〈·〉 denotes the average over j0. When the embed-

ded vector Vj has a structure such as periodic solutions

with multiple cycles or a chaotic attractor, we say that

the system has a deterministic structure. Note that a

periodic solution where a neuron fires with an average

interval T is regarded as a stochastic process around T ,

so it does not have a deterministic structure. A small

value of NPE less than 1 implies that the ISI sequence

has the deterministic structure behind the time series

because this algorithm is based on the assumption that

the dynamical structure of a finite dimensional deter-

ministic system can be well reconstructed by the delay

coordinates of ISI (Sauer 1994). However, stochastic time

series with large auto-correlations can also take NPE val-

ues less than 1. Thus, we could not conclude that there

is a deterministic structure only from the smallness of

NPE.

To confirm the deterministic structure, the values of

NPE should be compared with those of NPE for a set of

surrogate data (Theiler et al. 1992). The surrogate data

are new time series generated from the original time se-

ries under some null hypotheses so that the new time se-

ries preserves some statistical properties of the original
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Fig. 2 a, b , c The return maps of the ISI sequences of the firings in Fig.1 . c, d, e The dependences of NPE on the prediction

step h of the each firings. The error bar denotes the maximum and the minimum NPEs for 100 surrogate data.

data. In the following we use three kinds of surrogation,

namely, random shuffled (RS), Fourier shuffled (FS), and

amplitude adjusted Fourier transformed (AAFT) surro-

gate data which correspond to the null hypotheses of an

independent and identically distributed random process,

a linear stochastic process, and a linear stochastic pro-

cess observed through a monotonic nonlinear function,

respectively (Theiler et al. 1992 ; Suzuki et al. 2000; Shi-

nohara et al. 2002). If the values of NPE for the original

data are sufficiently smaller than those of NPE for the

surrogate data, the null hypothesis is rejected, and it

can be concluded that there is some possibility that the

original time series has a deterministic structure.

4 Application of noisy pulse trains to the ISI

sequence

In the following, the parameters are fixed as m = 3 and

β = 0.05. The length of the ISI sequence {Tk} is fixed

at 2048.

The nonlinear prediction is applied to the firings in

Figs.1, and the results are shown in Figs.2. Figure 2a,

b, and c show the return maps of Tk obtained from a

single excitatory neuron in the firings shown in Figs.1.

It is observed that the random firings in Fig.1a have a

mean period about 4. Note that there also exist short

ISIs with Tk 	 1, and they are the artifacts caused by

the large noise intensity.
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Figures 2d, e, and f show the dependences of NPE

on the prediction step h of each firings. As shown in

Fig.2d, the prediction based on the embedding is diffi-

cult for random firings, and those NPEs cannot be dis-

criminated from those of surrogate data. Thus, this ISI

sequence is regarded as a stochastic process. In contrast

to the results of the random firings, NPEs for periodic

firings and chaotic firings take smaller values than those

of surrogate data, and they increase with the increase in

the prediction step h. From these observations, it might

be concluded that these ISI sequences have both deter-

ministic structures and the sensitive dependence on the

initial condition, namely, these time series are chaotic

(Suzuki et al. 2000; Shinohara et al. 2002). Of course,

the firings in Fig.1b are noisy periodic firings, and ac-

tually do not have a sensitive dependence on the initial

condition. Thus, the above conclusions are wrong. More-

over, as stated above, periodic firings should be classified

as stochastic processes because they do not have deter-

ministic structures.

In the following, the reason why the deterministic

structures are observed in the synchronized periodic fir-

ings is considered. The raster plot of the noisy periodic

firings and a time series− sin(θ(1)
E (t))+1/a from the neu-

ron 1 for D = 0.007 are shown in Fig.3. It is observed

that the neuron 1 fires not only when synchronized fir-

ings takes place, but also when the other neurons are

almost silent. Such firings are indicated by vertical ar-

0
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0 100 20050 150

T

T+σ1

noise-induced
      pulse

T1 T2

T+σ2 T+σ3

Fig. 3 The raster plot of the noisy periodic firings and a

time series − sin(θ
(1)
E (t)) + 1/a for D = 0.007.

rows in Fig.3, and we call them noise-induced pulses in

the following.

When the period of synchronized firings is T , the cor-

responding ISIs in a single neuron takes T +σi where σi

is a random variable as shown in Fig.3. However, the ac-

tual ISI sequence does not necessarily take such values

because there also exist noise-induced pulses. Actually,

Tk tends to suffice the relation Tk + Tk+1 ∼ T as shown

in Fig.3. For the noisy periodic firings in Fig.2b, it is

observed that T ∼ 45 and many data suffice the rela-

tion Tk + Tk+1 ∼ 45. When such a structure exists, the

prediction becomes easy, and NPEs take small values.

Moreover, the long-term prediction is difficult because

there exists noise in the system. Thus, NPE increases

with the increase of the prediction step h. For the above

reasons, the synchronized periodic firings were regarded

as a deterministic time series with a sensitive dependence

on the initial condition by mistake.
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On the other hand, even for the chaotic ISI sequence

shown in Fig.2c, fine structures cannot be observed. Thus,

it is not clear whether the observed ISI sequence really

has chaotic properties. This is because the noise-induced

pulses exist also in the chaotic ISI sequence.

In the following, we propose a method to eliminate

the noise-induced pulses, and discriminate between the

periodic pulse train and the chaotic one.

5 Grouping the ISI sequence with the genetic

algorithm

Let us consider an ISI sequence {Tk}K
k=1 and group it

into M groups (T1, · · · , Tk1), (Tk1+1, · · · , Tk2) · · ·

(TkM−1+1, · · · , TkM ) where k0 = 0 and kM = K. With

this grouping, a new ISI sequence T new
n is defined as

T new
n =

kn∑
k=kn−1+1

Tk. (8)

If the grouping which eliminates the noise-induced

pulses is applied to a noisy periodic pulse train, the ISIs

of the new sequence would take the values which are

close to the original period. To realize such a grouping,

we minimize the standard deviation σT of T new
n with the

genetic algorithm (GA) (Davis 1996). Let us consider the

coding to the gene where it takes 1 for Tkn+1 and takes

0 otherwise for the original sequence {Tk} as shown in

Fig.4. When such a coding is determined, the new ISI

sequence T new
n is obtained, and σT can be calculated. If

1/σT is maximized with GA, the optimal grouping would

1 0 0 1

T1 T2 T3

T1
new T2

new

0 0

T3
new

1 1

Fig. 4 The coding to the genes and a new ISI sequence.

be realized. Note that the numberM of the groups is not

fixed, so it is variable during the process of GA.

The mean value T and the standard deviation σT of

T new
n during GA for the ISI sequence of the noisy peri-

odic firings are shown in Fig.5. The genes are initialized

T

σT

T

σT

generation
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 0  250000  500000  750000  1e+06

Fig. 5 The mean value T and the standard deviation σT of

T new
n during GA for the ISI sequence of noisy periodic firings.

randomly. It is observed that σT converges to a small

value. Similarly, a new ISI sequence is also obtained for

the chaotic firings.
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Fig. 6 The results of nonlinear prediction applied to the new ISI sequences T new
n . a, b The return maps of the ISI sequences

of a periodic firings and b chaotic firings. c, d The dependences of NPE on the prediction step h of c the periodic firings and

d the chaotic firings. The error bar denotes the maximum and the minimum NPEs for 100 surrogate data.

The results of the nonlinear prediction applied to the

new ISI sequences T new
n are shown in Fig.6. As shown

in Fig.6a, for the new ISI sequence of periodic firings,

the noise-induced pulses are eliminated, and the period-

icity of the ISI sequence is restored. And, as shown in

Fig.6c, its NPEs cannot be discriminated from those of

surrogate data. Thus, it can be regarded as a stochastic

process. For the new ISI sequence of chaotic firings, the

return map shows a clear parabolic structure as shown

in Fig.6b. This structure reflects the chaotic structure

of the synchronized firings in Fig.1c. Namely, the noise-

induced pulses are eliminated by the grouping, and the

chaotic structure is restored. As shown in Fig.6d, its

NPEs can be easily discriminated from those of surro-

gate data, and the sensitive dependence on the initial

condition becomes more clear.

6 Properties of the proposed method

In the previous section, we proposed a grouping method

of ISI sequences, and performed detections of chaotic

structures in noisy pulse trains based on the ISI recon-

struction. To detect a chaotic structure in an ISI se-

quence, both the grouping and the reconstruction must

be successful.

Empirically, the grouping seems to be almost always

successful when low-dimensional structures such as Figs.6a
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and b exist. This would be because the variance of an ISI

sequence takes small values when it is confined in some

local structure.

On the other hand, the prediction based on the re-

construction does not always give successful results, and

such an example is shown in Fig.7. Although the used
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Fig. 7 The failure of the detection of the chaotic structure

for a = 1.05, D = 0.016, gext = 3.4, and gint = 4. a The

return maps of the ISI sequences after the grouping. b The

dependences of NPE on the prediction step h. Although the

grouping is successful, the prediction could not distinguish

this ISI sequence from stochastic processes.

ISI sequence is obtained from chaotic synchronized fir-

ings and the grouping is successful, the prediction based

on the reconstruction could not distinguish this ISI se-

quence from stochastic processes. This is because the

chaotic structure is hidden in noise as shown in Fig.7a,

not because the grouping failed. In other words, the fluc-

tuation σi in Fig.3 is too large and a chaotic structure

like Fig.6b is lost. Thus, it could be concluded that this

prediction based on the reconstruction gives reasonable

results only when the observed neuron preserves the pre-

cision of the spike timing to some extent and when noise

is small enough not to destroy the original chaotic struc-

ture. In other words, this method is suitable for the ISI

sequences from neurons whose information is coded in

the timings of spikes. On the other hand, the ISI se-

quence used in Fig.7 does not preserve the timings of

the chaotic synchronization, and the chaotic property is

coded in the firing rate of the network. Thus, the detec-

tion of the chaotic structure fails.

7 Conclusions and discussions

To establish a method for the detection of chaotic struc-

tures in noisy pulse trains, the nonlinear prediction method

based on the ISI reconstruction is applied to the noisy ISI

sequence, and the detection of the deterministic struc-

ture is performed.

For random firings, the NPEs for the original data

cannot be discriminated from those of surrogate data.

Thus, those data are regarded as stochastic precesses.
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For the synchronized periodic firings and the synchro-

nized chaotic firings, their NPEs imply the determinis-

tic structures and the sensitive dependence on the ini-

tial condition, but they are wrong results caused by the

noise-induced pulses.

When the nonlinear prediction method is applied af-

ter the elimination of noise-induced pulses by the group-

ing with the GA, the synchronized periodic firings and

the synchronized chaotic firings are discriminated. Par-

ticularly, the chaotic structure of the chaotic firings be-

comes clear after the grouping.

The flow of the nonlinear prediction with the group-

ing is shown in Fig.8. With the grouping, we can discrim-

ISI groupingprediction

random

prediction

periodic

chaotic
   and
 others

Fig. 8 The flow of the nonlinear prediction with the group-

ing. With the grouping, noisy periodic pulse trains and

chaotic pulse trains are discriminated.

inate between the noisy periodic sequence and the noisy

chaotic sequence. This method gives reasonable results

only when the observed neuron preserves the precision

of the spike timing to some extent and when noise is

small enough not to destroy the original chaotic struc-

ture. Thus, this method is suitable for the ISI sequences

from neurons whose information is coded in the timings

of spikes.

Note that the ISI sequences which are not regarded

as periodic after the second prediction are not always

chaotic. For example, a periodic sequence with two or

more cycles is not regarded as periodic with this method,

but of course they are not chaotic. Thus, more careful

analyses will be required for the experimentally obtained

time series.
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