ベクトル解析演習 演習問題 (7) \(\nabla, \text{grad}, \text{div}, \text{rot}, \Delta \) (解答編)
担当：金丸隆志

学籍番号： 氏名：

[問題 1] \(\nabla\) に関する計算問題
ベクトル場 \(\mathbf{A}(x, y, z) = \left(\frac{x^2y^3}{2}, \frac{2xy^2z^4}{y^2x^3}, \frac{-y^3z^5}{2}\right)\) に対して、

\[
\text{grad} \left(\text{div} \mathbf{A}\right)
\]
を計算せよ。すなわち、\(\nabla(\nabla \cdot \mathbf{A})\) のことである。

[問題 1 解説]
定義通り順番に計算していけば良い。

\[
\text{div} \mathbf{A} = \frac{\partial}{\partial x} (x^2y^3) + \frac{\partial}{\partial y} (2xy^2z^4) + \frac{\partial}{\partial z} (-y^3z^5)
= 2xy^3 + 4xyz^4 - 5y^3z^4
\]
これに対して \(\text{grad}\) を適用すると

\[
\text{grad} \left(\text{div} \mathbf{A}\right) = \left(\frac{2y^3 + 4yz^4}{2}, \frac{6xy^2 + 4x^3 - 15y^3z^4}{6xyz^3 - 20y^3z^3}\right)
\]
となる。

[問題 2] \(\nabla\) の性質
(a) ベクトル場 \(\mathbf{A}(x, y, z) = \left(\frac{xyz}{2}, \frac{-y^2z^3}{2}, \frac{2x^3y^3}{2}\right)\) に対して、

\[
\text{div} (\text{rot} \mathbf{A})
\]
を計算せよ。すなわち、\(\nabla \cdot (\nabla \times \mathbf{A})\) のことである。

(b) スカラー場 \(\phi(x, y, z) = x^2 + \cos(y - z)\) に対して、

\[
\text{rot} (\text{grad} \phi)
\]
を計算せよ。すなわち、\(\nabla \times (\nabla \phi)\) のことである。

[問題 2 解説]
(a) 定義通り順番に計算していけば良い。まず、

\[
\text{rot} \mathbf{A} = \left(\frac{2x^3y^2}{2}, \frac{-3xy}{2}, \frac{-xz}{2}\right)
\]
が計算される。実はこれは前回計算したものと同じである。このベクトル場に対して \(\text{div}\) を適用する。

\[
\text{div} (\text{rot} \mathbf{A}) = \frac{\partial}{\partial x} (2x^3y^2 + 3xy^2 + z^2) + \frac{\partial}{\partial y} (-3xy) + \frac{\partial}{\partial z} (-xz)
= 4x - 3x - x = 0.
\]
実は、一般に任意のベクトル場 \(\mathbf{A}(x, y, z)\) に対して

\[
\text{div} (\text{rot} \mathbf{A}) = \nabla \cdot (\nabla \times \mathbf{A}) = 0
\]
となることが知られている。

(b) 定義通り順番に計算していけば良い。まず、

\[
\text{grad} \phi = \left(\frac{2x}{-\sin(y - z)}, \frac{-\sin(y - z)}{\sin(y - z)}\right)
\]
が計算される。これに対して \(\text{rot}\) を適用すると、\(\text{rot} (\text{grad} \phi) = 0\) となる。実は、一般に任意のスカラー場 \(\phi(x, y, z)\) に対して

\[
\text{rot} (\text{grad} \phi) = \nabla \times (\nabla \phi) = 0
\]
となることが知られている。

[問題 3] 調和関数
スカラー場 \(\phi(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}\) に対して以下の間に答えよ。
(a) \(\frac{\partial \phi}{\partial x}\) を計算せよ。
(b) \(\frac{\partial^2 \phi}{\partial x^2}\) を計算せよ。
(c) \(\Delta \phi = 0\) であることを示せ。一般に、\(\Delta \phi = 0\) を満たすスカラー場 \(\phi\) のことを調和関数という。

[問題 3 解答]
(a)

\[
\frac{\partial}{\partial x} \left(\frac{1}{\sqrt{x^2 + y^2 + z^2}}\right) = \frac{\partial}{\partial x} \left(-\frac{1}{2}(x^2 + y^2 + z^2)^{-\frac{3}{2}}\right)
= -\frac{1}{2}(x^2 + y^2 + z^2)^{-\frac{3}{2}}(2x)
= -\frac{1}{2}(x^2 + y^2 + z^2)^{-\frac{3}{2}}
\]

(b)

\[
\frac{\partial^2 \phi}{\partial x^2} = \frac{\partial}{\partial x} \left(-x(x^2 + y^2 + z^2)^{-\frac{3}{2}}\right)
= -(x^2 + y^2 + z^2)^{-\frac{3}{2}}
\]

(c) (b) の結果をそのまま用いると、

\[
\Delta \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2}
= -3(x^2 + y^2 + z^2)^{-\frac{3}{2}}
+3(x^2 + y^2 + z^2)(x^2 + y^2 + z^2)^{-\frac{3}{2}}
= -3(x^2 + y^2 + z^2)^{-\frac{3}{2}} + 3(x^2 + y^2 + z^2)^{-\frac{3}{2}}
= 0.
\]
よって、このスカラー場は調和関数であることが確かめられた。