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Abstract
Synchronized firings in the networks of class 1 ex-

citable neurons with excitatory and inhibitory con-
nections are investigated, and their dependences on
the forms of interactions are analyzed. As the forms
of interactions, we treat the double exponential cou-
pling and the interactions derived from it, namely,
the pulse-coupling, the exponential coupling, and the
alpha-coupling. It is found that the bifurcation struc-
ture of the networks mainly depends on the decay time
of the synaptic interaction and the effect of the rise
time is smaller than that of the decay time.
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1 Introduction

Recently, oscillations and synchronization in neural
systems are attracting considerable attention. Par-
ticularly, in the visual cortex and the hippocampus,
synchronized oscillations with typical frequencies are
often observed in the average behaviors of the neu-
ronal ensemble, and it is proposed that they are re-
lated to the binding of the information in the visual
cortex, and the regulation of the synaptic plasticity in
the hippocampus (for a review, see Gray (1994)).

To understand the mechanism of such synchronized
oscillations, networks of excitatory or inhibitory neu-
rons have been investigated by numerous authors (Ab-
bott and Vreeswijk, 1993; Hansel, Mato, and Meunier,
1995; Kuramoto, 1991; Mirollo and Strogatz, 1990;
Sato and Shiino, 2002; Tsodyks, Mitkov, and Som-
polinsky, 1993; van Vreeswijk, 1996; van Vreeswijk,
Abbott and Ermentrout, 1994). Typically, the perfect

synchronization is observed in the network of pulse-
coupled self-oscillating excitatory neurons (Kuramoto,
1991; Mirollo and Strogatz, 1990), but it is not always
stable for networks with slow couplings, and the par-
tial synchronization, the anti-phase synchronization,
or an asynchronous state appears depending on the
parameters such as the characteristic time scale of
the synaptic interaction (Abbott and Vreeswijk, 1993;
Hansel, Mato, and Meunier, 1995; Sato and Shiino,
2002; Tsodyks, Mitkov, and Sompolinsky, 1993; van
Vreeswijk, 1996; van Vreeswijk, Abbott and Ermen-
trout, 1994). The frequencies of these synchronized
firings are determined mainly by the frequency of a
single neuron, and they might be much larger than
the physiologically observed ones, such as 40Hz of the
gamma oscillation.

Recently, more complex dynamics than that of the
excitatory network have been found in networks of ex-
citatory and inhibitory neurons (Börgers and Kopell,
2003; Brunel, 2000; Golomb and Ermentrout, 2001;
Hansel and Mato, 2003; Kanamaru and Sekine, 2003,
2004; van Vreeswijk and Sompolinsky, 1996). Simi-
larly to the excitatory network, the synchronized fir-
ings are observed in the network of self-oscillating neu-
rons (Börgers and Kopell, 2003) or in the network
of self-oscillating and excitable neurons (Hansel and
Mato, 2003). Moreover, the synchronized firings are
observed even in the network only of excitable neu-
rons with excitatory and inhibitory connections un-
der noisy environment (Brunel, 2000; Kanamaru and
Sekine, 2003, 2004), where excitable neurons in the
absence of connections fire randomly with the help of
noise, and when an appropriate strength of connec-
tions is introduced, the synchronized firings appear.
In our previous studies (Kanamaru and Sekine, 2003,
2004), a noisy network of class 1 neurons with exci-
tatory and inhibitory connections is investigated by
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means of bifurcation analyses, and various synchro-
nized firings including chaotic ones are found. It is
found that the frequencies of such synchronized firings
depend on both the noise intensity and the coupling
strength. In this model, the characteristic time scale of
the interaction is assumed to be the same order as that
of each neuron, and we could not examine the effect of
the time scale of synaptic interactions systematically.

In the present paper, we investigate the synchro-
nized firings in the networks of class 1 excitable neu-
rons with excitatory and inhibitory connections under
noisy environment, and examine their dependences on
the forms of interactions. As the forms of interac-
tions, we treat the double exponential coupling and
the interactions derived from it in some limiting cases,
namely, the pulse-coupling, the exponential coupling,
and the alpha-coupling. With these couplings, the de-
pendence of the bifurcation structure on the rise time
and the decay time of synaptic interactions is investi-
gated. In section 2, the definition of our model is given
and its Fokker-Planck equations are introduced. Four
forms of interactions, namely, the double exponential
coupling, the pulse-coupling, the exponential coupling,
and the alpha-coupling are also introduced. In section
3, the network with the pulse-coupling is analyzed by
solving the Fokker-Planck equations, and a bifurca-
tion set is obtained numerically. It is observed that
the synchronized periodic firings appear mainly by go-
ing through the Hopf bifurcation or the saddle-node on
limit cycle bifurcation. In section 4, the network with
the exponential coupling is analyzed. Besides the syn-
chronized periodic firings, synchronized chaotic firings
and anomalous high-frequency synchronization are ob-
served. The effect of the decay time of the synaptic
interaction is also investigated. In section 5, the net-
works with the alpha-coupling or the double exponen-
tial coupling are analyzed. It is found that the de-
pendence of the bifurcation structure on the rise time
of the synaptic interaction is weaker than that on the
decay time. Conclusions and discussions are given in
the final section.

2 Model

Let us consider the coupled active rotators composed
of excitatory neurons θ

(i)
E (i = 1, 2, · · · , NE) and in-

hibitory neurons θ
(i)
I (i = 1, 2, · · · , NI) (Kanamaru and

Sekine, 2003, 2004) written as

τE
˙

θ
(i)
E = 1 − a sin θ

(i)
E + ξ

(i)
E (t)

+IEE(t) − IEI(t), (2.1)

τI
˙

θ
(i)
I = 1 − a sin θ

(i)
I + ξ

(i)
I (t)

+IIE(t) − III(t). (2.2)

Here, a is a system parameter, τE and τI are the time
constants of the neuron, IXY (t) (X, Y = E or I) is the
synaptic input from the ensemble Y to the ensemble
X , and ξ

(i)
X (t) is Gaussian white noise satisfying

〈ξ(i)
X (t)ξ(j)

Y (t′)〉 = DδijδXY δ(t − t′), (2.3)

where D is the noise intensity and δij is Kronecker’s
delta. For a > 1, an active rotator shows typical prop-
erties of an excitable system, namely, it has a sta-
ble equilibrium θ0 ≡ arcsin(1/a), and − sin(θ(i)(t)) +
1/a shows a pulse-like waveform when an appro-
priate amount of disturbance is injected (Kurrer
and Schulten, 1995; Sakaguchi, Shinomoto, and Ku-
ramoto, 1988; Shinomoto and Kuramoto, 1986; Tan-
abe, Shimokawa, Sato, and Pakdaman, 1999). Note
that a single active rotator can be transformed into
the canonical model θ̇ = (1 − cos θ) + (1 + cos θ)r for
class 1 neurons (Ermentrout, 1996; Izhikevich, 1999).
Thus, our synaptically coupled active rotators might
reflect the dynamics of networks of class 1 neurons such
as Connor model or Morris-Lecar model (Ermentrout,
1996). Moreover, the active rotator has a property
that its Fokker-Planck equations can be numerically
integrated with smaller number of terms than that of
the leaky integrate-and-fire model. Thus, we consider
it as an effective tool to analyze the dynamics of pulse
neural networks.

As the interaction IXY (t) from the ensemble Y to
the ensemble X (X , Y = E or I), we consider the
difference of two exponential functions (Abbott and
Vreeswijk, 1993; Hansel, Mato, and Meunier, 1995;
Gerstner and Kistler, 2002) written as

IXY (t) =
gXY

NY

NY∑
j=1

∑
k

1
κ1Y − κ2Y

×
{

exp

(
− t − t

(j)
k

κ1Y

)
− exp

(
− t − t

(j)
k

κ2Y

)}
,

(2.4)

where t
(j)
k is the k-th firing time of the j-th neuron,

and κ1Y and κ2Y (κ1Y > κ2Y > 0) denote the decay
time and the rise time of the synaptic interaction, re-
spectively. Note that the second sum is taken over k

satisfying t > t
(j)
k , and the firing time is defined as

the time when θ
(j)
Y turns around over the value 3π/2

which is the point located at the opposite side of the
stable equilibrium point θ0 = arcsin(1/a) ∼ π/2. This
interaction is called the double exponential coupling
in the following.
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In the three limits κ1Y , κ2Y → 0, κ2Y → 0 (κ1Y ≡
κY ), and κ1Y → κ2Y ≡ κY , IXY (t) is rewritten as

IXY (t) =
gXY

NY

NY∑
j=1

∑
k

δ(t − t
(j)
k ), (2.5)

IXY (t) =
gXY

NY

NY∑
j=1

∑
k

1
κY

exp

(
− t − t

(j)
k

κY

)
,

(2.6)

IXY (t) =
gXY

NY

NY∑
j=1

∑
k

t − t
(j)
k

κ2
Y

exp

(
− t − t

(j)
k

κY

)
,

(2.7)

and we call them the pulse-coupling, the exponen-
tial coupling, and the alpha-coupling, respectively. In
the following, synchronization phenomena in the net-
work with each coupling are analyzed. To reduce the
number of parameters, we set gEE = gII ≡ gint,
gEI = gIE ≡ gext, a = 1.05, and τE = τI = 1.0.

In the previous studies (Kanamaru and Sekine,
2003, 2004), we considered a network with the
waveform-coupling written as

IXY (t) =
gXY

NY

NY∑
j=1

(− sin θ
(j)
Y + 1/a), (2.8)

where the waveform of the pulse is injected to the next
neuron directly, and found various synchronized fir-
ings including the synchronized chaotic firings and the
weakly synchronized periodic firings. It is noticeable
that chaos is observed in the noisy network of active
rotators, while chaos does not appear in a single ac-
tive rotator by the general property of one dimensional
differential equations. In those studies, the waveform-
coupling was used for the facilitation of the numerical
analyses, but, to compare them with the physiologi-
cally observed synchronization phenomena, the double
exponential coupling and the couplings derived from it
seem to be more appropriate.

For the analysis, let us introduce the Fokker-Planck
equations (Gerstner and Kistler, 2002; Kuramoto,
1984)

∂nE

∂t
= − 1

τE

∂

∂θE
(AEnE) +

D

2τ2
E

∂2nE

∂θE
2 ,

(2.9)
∂nI

∂t
= − 1

τI

∂

∂θI
(AInI) +

D

2τ2
I

∂2nI

∂θI
2 ,

(2.10)
AE(θE , t) = 1 − a sin θE + IEE(t) − IEI(t),

(2.11)

AI(θI , t) = 1 − a sin θI + IIE(t) − III(t),
(2.12)

for the normalized number densities of the excitatory
and inhibitory neurons

nE(θE , t) ≡ 1
NE

∑
δ(θ(i)

E − θE), (2.13)

nI(θI , t) ≡ 1
NI

∑
δ(θ(i)

I − θI), (2.14)

in the limit NE , NI → ∞. Note that asynchronous
firings and synchronized firings of the network cor-
respond to a stationary solution and a time-varying
solution of the Fokker-Planck equations, respectively.

The probability fluxes for the excitatory and in-
hibitory ensembles are defined as

JE(θE , t) =
1
τE

AEnE − D

2τ2
E

∂nE

∂θE
, (2.15)

JI(θI , t) =
1
τI

AInI − D

2τ2
I

∂nI

∂θI
, (2.16)

respectively. Note that the probability flux at θ =
3π/2 can be interpreted as the instantaneous firing
rate at t for each ensemble.

3 Pulse-coupling

In this section, a network with the pulse-coupling writ-
ten by equations 2.1, 2.2, and 2.5 is considered.

The coupling term IXY (t) in equation 2.5 is approx-
imated as

IXY (t) = gXY JY (t) + σ(t), (3.1)

where JY (t) ≡ JY (3π/2, t) is the firing rate, and σ(t)
is a fluctuation term. The probability flux JY (t) at
θ = 3π/2 is obtained by solving equations 2.15 and
2.16 for θ = 3π/2. This flux JY (t) can be calculated
when an inequality(

1 − gEE

τE
nE

(
3π

2

))(
1 +

gII

τI
nI

(
3π

2

))

+
gEIgIE

τEτI
nE

(
3π

2

)
nI

(
3π

2

)
�= 0 (3.2)

is satisfied. A sufficient condition for inequality 3.2 is

1 − gEE

τE
nE

(
3π

2

)
> 0 (3.3)

because the other terms in 3.2 are positive. Within all
our numerical solutions, the condition 3.3 is proven to
be satisfied.
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Figure 1: A bifurcation set in the (D, gext) plane for
the pulse-coupled network with gint = 3.5. The solid,
dotted, and dash-dotted lines denote the Hopf, saddle-
node, and global bifurcations, respectively. Schematic
flows of the solution in the (JE , JI) plane are also
drawn on the bifurcation set. The filled and open cir-
cles in the trajectories in the (JE , JI) plane denote the
stable and unstable equilibrium points, respectively.
And the solid and dashed closed curves denote the sta-
ble and unstable limit cycles, respectively. The mean-
ings of the abbreviations are as follows: SN, saddle-
node; SNL, saddle-node on limit cycle; DLC, double
limit cycle; HB, homoclinic bifurcation; SH, subcriti-
cal Hopf; GH, generalized Hopf.

In the limit of NY → ∞, the fluctuation term σ(t)
converges to zero. With this approximation, a numer-
ically obtained bifurcation set for gint = 3.5 in the
(D, gext) plane is shown in Figure 1. Typically, there
exist synchronized firings in the area between the Hopf
bifurcation line and the saddle-node on limit cycle bi-
furcation line with moderate values of D. In Figure
1, flows in the plane of probability fluxes JE and JI

are also shown, and their explanations are given in the
latter half of this section. The Hopf and the saddle-
node bifurcation lines are obtained as follows. First,
equations 2.9 and 2.10 are transformed into a set of or-
dinary differential equations ẋ = f(x) for the spatial

Fourier coefficients of nE and nI as shown in the Ap-
pendix. Next a stationary solution x0 is numerically
obtained with the Newton method (Press et al., 1988),
and the eigenvalues of the Jacobian matrix Df(x0) nu-
merically obtained by using the QR algorithm (Press
et al., 1988) are examined to find bifurcation lines. For
numerical calculations, each Fourier series is truncated
at the first 40 or 60 terms.

The homoclinic and the double limit cycle bifurca-
tion lines are obtained by observing the long time be-
haviors of the solutions of equations 2.9 and 2.10. This
bifurcation set is similar to that of the network with
the waveform-coupling (Kanamaru and Sekine, 2003)
except the fact that chaotic firings found in the net-
work with the waveform-coupling does not exist in this
network.

To understand the bifurcation set, schematic flows
of the solution in the (JE , JI) plane are also drawn on
the bifurcation set in Figure 1. Note that a stationary
solution and a time-periodic solution of the Fokker-
Planck equations are projected as an equilibrium point
and a limit cycle onto the (JE , JI) plane, respectively,
and they correspond to the asynchronous and the syn-
chronized firings of the network, respectively. Typ-
ically, for small D and moderate gext, there exist a
stable equilibrium point with small probability fluxes.
This equilibrium point corresponds to the firings where
all neurons fluctuate around their resting potentials,
and, when this point disappears by the saddle-node
on limit cycle bifurcation, the synchronized firings ap-
pear. For large D, there exist a stable equilibrium
point with large probability fluxes, and it corresponds
to the firings where neurons fire with high frequen-
cies without correlations. And the synchronized firings
also appear after the Hopf bifurcation of the equilib-
rium point. This equilibrium point approaches to the
origin of the (JE , JI) plane with the increase of gext,
and its probability fluxes become small. Moreover, in
some region in the bifurcation set, the synchronized fir-
ings also appear by the double limit cycle bifurcation
or the homoclinic bifurcation. For more information
about each bifurcation, see Guckenheimer and Holmes
(1983); Hoppensteadt and Izhikevich (1997).

The raster plots of the typical synchronized firings
for the finite system with NE = NI = 1000 are shown
in Figure 2. Each figure shows the firing times of the
neurons. As shown in Figure 2A, the synchronized
firings near the saddle-node on limit cycle bifurcation
have a long period and their degree of synchroniza-
tion is strong. This is because the system stays long
time in the area where the original saddle and node
existed. As shown in Figure 2B, the synchronized fir-
ings near the Hopf bifurcation have a short period and
their degree of synchronization is weak. This is be-
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Figure 2: The raster plots of the typical synchronized
firings for the finite system with NE = NI = 1000.
The parameters are set at (A) gext/gint = 0.4 and
D = 0.015, and (B) gext/gint = 0.4 and D = 0.08
with gint = 3.5. The neurons are aligned so that the
excitatory neurons are in the range 0 ≤ i < 1000 and
the inhibitory neurons are in the range 1000 ≤ i <
2000.

cause the limit cycle which corresponds to this weakly
synchronized firing with a high firing rate is created
around the stable equilibrium point which denotes the
asynchronous firings.

4 Exponential coupling

In this section, a network with the exponential cou-
pling is analyzed. The parameters are fixed at κE =
κI = 1 and gint = 3.5.

For large number of neurons, equation 2.6 is approx-
imated by the Ornstein-Uhlenbeck process (Gardiner,
1985) written as

˙IXY (t) = −(IXY (t) − gXY JY (t))/κY + σ(t), (4.1)

where σ(t) is a fluctuation term, and σ(t) converges to
zero in the limit of NY → ∞. By integrating this dif-
ferential equation with the Fokker-Planck equations,
the exponentially coupled network can be numerically
analyzed. A numerically obtained bifurcation set in
the (D, gext) plane is shown in Figure 3. In this bi-
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Figure 3: A numerically obtained bifurcation set of the
exponentially coupled network. The parameters are
set at κE = κI = 1 and gint = 3.5. The solid, dotted,
and dash-dotted lines denote the Hopf, saddle-node,
and global bifurcations, respectively. Schematic flows
of the solution in the (JE , JI) plane are also drawn
on the bifurcation set. The filled and open circles in
the trajectories in the (JE , JI) plane denote the sta-
ble and unstable equilibrium points, respectively. And
the solid closed curves denote the stable limit cycle.
The meanings of the abbreviations are as follows: SN,
saddle-node; HB, homoclinic bifurcation.

furcation set, there exists a crisis line where a chaotic
solution disappears, as it will be explained later in this
section.

In Figure 3, schematic flows of the solution in the
(JE , JI) plane are also drawn on the bifurcation set.
The bifurcation structure roughly resembles that of
the pulse-coupled network, but, in the exponentially
coupled network, there additionally exist the period-
doubling bifurcations and the chaotic solutions.
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The flows in the (JE , JI) plane, the time series of
JE , and the raster plots for the finite system with
NE = NI = 1000 are shown in Figures 4A, B, and
C, respectively, and the synchronized chaotic firings
are observed. Let us consider the Poincaré section of
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Figure 4: The chaotic dynamics observed in the expo-
nentially coupled network for gext/gint = 0.64, gint =
3.5, and D = 0.0125. (A) A flow in the (JE , JI) plane.
(B) A time series of JE . (C) The raster plot of the
firings in the finite system with NE = NI = 1000.

the trajectory at a line JE = 0.15 with dJE/dt > 0
in the (JE , JI) plane. The bifurcation diagram of
the attractors at the Poincaré section against D for
gext/gint = 0.64 and gint = 3.5 is shown in Figure 5A,
and the chaotic attractors are observed. To confirm
that the chaotic behaviors in Figure 5A are actually
chaotic, the largest Lyapunov exponent is calculated
by the standard technique (Ott, 1993), namely, by cal-
culating the expansion rate of two nearby trajectories
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Figure 5: The positions of the attractors on the
Poincaré section JE = 0.15 against D for gext/gint =
0.64. (B) The corresponding Lyapunov exponent.

each of which follows a set of ordinary differential equa-
tions ẋ = f(x) for the spatial Fourier coefficients of
equations 2.9 and 2.10. The corresponding Lyapunov
exponent is shown in Figure 5B. It is observed that
the Lyapunov exponent takes positive values when the
chaotic solutions exist, and takes zero when periodic
solutions are stable.

In the following, periodic solutions with the period
n in the Poincaré section are called periodic solutions
with cycle n. The areas where the periodic solutions
with cycle 2 or 4, or the chaotic solutions exist are
roughly sketched in Figure 6. The periodic solutions
with large cycles and the windows in the chaotic re-
gions are neglected because their areas are very nar-
row. In the bifurcation set, there exist points of crisis
line where the chaotic attractors disappear. When a
periodic solution instead of the chaotic attractor disap-
pears, this point is the point of homoclinic bifurcation.

For small gext, high-frequency synchronization
where excitatory neurons continue to fire with the pe-
riod about their pulse width are observed. The flows
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Figure 6: The areas where the periodic solutions with
cycle 2 or 4, or the chaotic solutions exist are roughly
sketched, and they are labeled “2”, “4”, and “C”, re-
spectively. In the area labeled “H”, there exists the
anomalous high-frequency synchronization.

of the probability flux and the raster plots for such
a synchronization are shown in Figure 7. As shown
in Figure 7B, it is observed that the frequencies of
the excitatory neurons are very high, and their pat-
terns of synchronization are hardly seen. It seems
that this high-frequency synchronization does not cor-
respond to the physiological observations because the
periods of the physiologically observed periodic firings
are much longer than the typical pulse width of a neu-
ron. Thus, we call this high-frequency synchronization
as the anomalous high-frequency synchronization. The
anomalous high-frequency synchronization is realized
because the probability flux JE of the excitatory neu-
rons always takes large values. A condition for the ex-
istence of the anomalous high-frequency synchroniza-
tion is obtained as follows. Generally, if the product
〈JX(t)〉Δ of the time-average 〈JX(t)〉 of the probabil-
ity flux and the pulse width Δ takes a value larger
than 1, the neurons in the ensemble X continue to
fire. With our parameters, the pulse width Δ is about
5. Thus, the excitatory neurons continue to fire if an
inequality 〈JX(t)〉 > 0.2 is satisfied. In the area la-
beled “H” in Figure 6, this inequality is satisfied, and
the anomalous high-frequency synchronization is ob-
served.

Before closing this section, let us consider the de-
pendence of the exponentially coupled network on the
synaptic time constants κE and κI . The bifurca-
tion sets for κE = κI = 0.1, κE = κI = 0.5, and
κE = κI = 3.0 are shown in Figure 8. The boundaries
of the areas where the periodic solution with cycle 2 or
the chaotic solution exists are roughly sketched. The
periodic solutions with larger cycles also exist for the
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Figure 7: The anomalous high-frequency synchroniza-
tion. (A) Flows of the probability flux and (B) the
raster plots for the finite system with NE = NI = 1000
for D = 0.014, gext/gint = 0.3, and gint = 3.5.

parameters of Figure 8C, but we neglect them because
those areas are very narrow. Moreover, the area where
the anomalous high-frequency synchronization exists
is also shown. As shown in Figure 8A, for small κE

and κI , the structure of the bifurcation set is almost
identical with that of the pulse-coupled network. This
is because equation 4.1 reduces to IXY (t) = gXY JY (t)
in the limit of κE, κI → 0, and it is equivalent to
the interaction term of the pulse-coupling in equation
3.1. As shown in Figures 8B and C, when κE and
κI are increased, the two homoclinic bifurcation lines
merge, and the periodic solutions with n cycles and the
chaotic solutions appear. Moreover, it is also observed
that the area where the synchronized firings exist be-
comes narrower along the D-axis by the increase of κE

and κI . In other words, the synchronized firings are
more easily obtained for short synaptic decay time κE

and κI . Note that the change of κE and κI does not
affect the positions of equilibrium points because the
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Figure 8: The bifurcation sets of the exponentially coupled network for (A) κE = κI = 0.1, (B) κE = κI = 0.5,
and (C) κE = κI = 3.0. The internal coupling strength gint is fixed at gint = 3.5. The boundaries of the areas
where the periodic solution with cycle 2 or the chaotic solution exist are rough sketches. Moreover, the areas
where the anomalous high-frequency synchronization exists are also shown.

equilibrium of 4.1 is independent of κY . Thus, if gext,
gint, and D are fixed, the firing rate or probability
flux of the equilibrium point is kept constant with the
change of κY . However, the stability of equilibrium
states depends on κE and κI , so the position of the
Hopf bifurcation line changes.

5 Alpha-coupling and double
exponential coupling

In the limit of NY → ∞, the coupling term IXY (t) for
the network with the alpha-coupling is approximated
as (Gardiner, 1985)

IXY (t) = gXY

∫ t

−∞
dt′α(t − t′; κY )JY (t′),(5.1)

α(t; κ) ≡ t

κ2
exp

(
− t

κ

)
, (5.2)

and it satisfies the differential equations written as

˙IXY (t) = − 1
κY

(IXY − I
(0)
XY ), (5.3)

˙
I
(0)
XY (t) = − 1

κY
(I(0)

XY − gXY JY ), (5.4)

where

I
(0)
XY (t) = gXY

∫ t

−∞
dt′e(t − t′; κY )JY (t′), (5.5)

e(t; κ) ≡ 1
κ

exp
(
− t

κ

)
. (5.6)

By integrating the Fokker-Planck equations with equa-
tions 5.3 and 5.4, the behavior of the network with the
alpha-coupling can be analyzed.

On the other hand, for the network with the double
exponential coupling, the coupling term IXY (t) can be
approximated as

IXY (t) =
1

κ1Y − κ2Y
(κ1Y I

(1)
XY − κ2Y I

(2)
XY ),(5.7)

I
(1)
XY (t) = gXY

∫ t

−∞
dt′e(t − t′; κ1Y )JY (t′),(5.8)

I
(2)
XY (t) = gXY

∫ t

−∞
dt′e(t − t′; κ2Y )JY (t′),(5.9)
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in the limit of NY → ∞. And I
(1)
XY (t) and I

(2)
XY (t)

satisfy the differential equations

˙
I
(1)
XY (t) = − 1

κ1Y
(I(1)

XY − gXY JY ), (5.10)

˙
I
(2)
XY (t) = − 1

κ2Y
(I(2)

XY − gXY JY ). (5.11)

By integrating the Fokker-Planck equations with equa-
tions 5.7, 5.10 and 5.11, the behavior of the network
with the double exponential coupling can be analyzed.

Following the above procedures, bifurcation sets of
the network with the alpha-coupling or the double
exponential coupling are shown in Figure 9. Fig-
ure 9A shows the result for the alpha-coupling with
κE = κI = 1, and Figures 9B and C show the re-
sults for the double exponential coupling with κ1E =
κ1I = 3 and κ2E = κ2I = 1, and κ1E = κ1I = 1
and κ2E = κ2I = 0.5, respectively. The internal cou-
pling strength gint is fixed at gint = 3.5. In Figure 9D,
the corresponding parameter values are plotted in the
(κ1Y , κ2Y ) plane. By comparing Figures 9A and B,
the effect of the decay time of the synaptic interaction
can be summarized. Similarly to the results for the
exponential coupling in Figure 8, with the increase of
the decay time, the area where the synchronized firings
exist becomes narrower along the D-axis. By compar-
ing Figures 9A and C, the effect of the rise time can be
summarized. Unlike the decay time, it is observed that
the change of the rise time does not give a large effect
on the overall bifurcation structure of the network.

We perform more detailed analyses about the depen-
dence of the bifurcation structure on the synaptic time
constants. We focus only on the large D, and consider
the Hopf bifurcation observed when varying the synap-
tic time constants κ1 ≡ κ1E = κ1I and κ2 ≡ κ2E = κ2I

for fixed D, gext and gint. As stated in the previous
section, the change of synaptic time constants affects
the stability of the equilibrium points, but it does not
affect the firing rate of each ensemble. The Hopf bifur-
cation lines observed when varying the synaptic time
constants are shown in Figure 10. Typically, as shown
in Figure 10A, the Hopf bifurcation takes place by de-
creasing the synaptic decay time κ1, and the synchro-
nized firings appear. This is because the area for the
synchronized firings widens along the D-axis with the
decrease of κ1 as shown in Figure 8. On the other
hand, as shown in Figure 10A, its dependence on the
synaptic rise time κ2 is not uniform. The Hopf bifur-
cation takes place with the change of κ2 only when
the synaptic decay time κ1 is appropriately chosen. It
is also observed that the synchronized firings appear
even with the increase of κ2.

Moreover, as shown in Figure 10B, there exist pa-
rameter values where long synaptic time constants

 0
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P

S

Figure 10: The Hopf bifurcation observed when vary-
ing the synaptic time constants for (A) gext/gint = 0.7
and D = 0.04, gext/gint = 0.6 and D = 0.05, and (B)
gext/gint = 0.25 and D = 0.013. The internal coupling
strength gint is fixed at gint = 3.5. For (A), the syn-
chronized periodic firings exist for short decay time κ1,
and, for (B), the synchronized periodic firings exist for
long decay time κ1. The synchronized state is stable
in the area labeled “P”, and the asynchronous state is
stable in the area labeled “S”.

cause the synchronized firings. This is because the
area for the synchronized firings slightly widens along
the gext-axis with the increase of κ1 as shown in Figure
8. However, these synchronized firings are anomalous
high-frequency synchronization, so this phenomenon
might not have a physiological correspondence.

6 Conclusions and discussions

On the synchronized firings in the networks of class 1
excitable neurons with excitatory and inhibitory con-
nections, their dependences on the forms of interac-
tions are analyzed. As the forms of interactions, we
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Figure 9: The bifurcation sets of the network with the alpha-coupling or the double exponential coupling. (A)
alpha-coupling, κE = κI = 1. (B) double exponential coupling, κ1E = κ1I = 3 and κ2E = κ2I = 1. (C)
κ1E = κ1I = 1 and κ2E = κ2I = 0.5. The internal coupling strength gint is fixed at gint = 3.5. (D) The chosen
parameters are plotted in the (κ1Y , κ2Y ) plane. The filled circles denote the parameters investigated in this
figure, and the open circles denote the parameters treated in the previous sections.

treat the double exponential coupling and the interac-
tions derived from it in some limiting cases, namely,
the pulse-coupling, the exponential coupling, and the
alpha-coupling, and investigate the dependence of the
bifurcation structure on the rise time and the decay
time of interactions.

By investigating the dependence of the solutions on
the external connection strength gext and the noise in-
tensity D, various synchronized firings are observed
such as the synchronized periodic firings, the syn-
chronized chaotic firings, and the anomalous high-
frequency synchronization. The decay time κ1 of the
synaptic potential affects the bifurcation structure of
the synchronized firings on the (D, gext) plane. With
the decrease of κ1, the area showing the synchronized
firings widens along the D-axis. In other words, the
synchronized firings are more easily obtained for a
short synaptic decay time. It is also found that a
relatively large value of κ1 is required to observe the
synchronized chaotic firings. The dependence of the
overall bifurcation structure on the synaptic rise time
κ2 is weaker than that on κ1.

In the analysis of synchronization in neural systems,
the average firing rate of the ensemble is often fixed by
regulating the constant input to the network (e.g., see
Hansel and Mato (2003)). With such a procedure, it
is possible to separate the effects of the firing rate and
the other parameters on the bifurcation structure. In
our model, the firing rate corresponds to the proba-
bility flux, and such a fixation of the firing rate is not
performed in our analysis, namely, the value of the fir-
ing rate varies dependent on parameters gext, gint, and
D. Thus, our bifurcation sets reflect the effect of both
the firing rate and the other parameters. However,
when gext, gint, and D are fixed, the firing rate of the
equilibrium point takes a constant value. Thus, the
effect of the firing rate is eliminated in the bifurcation
set in the (κ1, κ2) plane (Figure 10).

Let us consider the effect of the time scale of the
synaptic interaction on the synchronized firings. In
the networks of self-oscillating excitatory neurons with
alpha-couplings, it is known that the perfectly syn-
chronized state is unstable (van Vreeswijk, 1996; van
Vreeswijk, Abbott, and Ermentrout, 1994). In such
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a network, the asynchronous state is stable for long
synaptic time scales, and the partially synchronized
state is stabilized for short synaptic time scales (van
Vreeswijk, 1996). The synchronization observed in
our noisy network would correspond to their partial
synchronization, and, similarly to their results, the
short synaptic time scale facilitates the synchroniza-
tion in our network (see Figure 10A). It is notice-
able that the synchronous state is stabilized even for
long synaptic times in some parameter range (see Fig-
ure 10B). This effect can be understood by consider-
ing the overall bifurcation structure. However, this
synchronous state corresponds to the anomalous high-
frequency synchronization, so this phenomenon might
not have a physiological correspondence. As for the
rise time of the synaptic interaction, it is known that
a pair of self-oscillating excitatory leaky integrate-and-
fire neurons with exponential couplings shows the per-
fect synchronization although the network with alpha-
couplings only shows the partial synchronization or
the anti-phase synchronization (van Vreeswijk, Ab-
bott, and Ermentrout, 1994). Moreover, for a pair
of self-oscillating excitatory neurons with double ex-
ponential couplings, it is also known that the short
rise time widens the parameter range where the par-
tial synchronization is observed (Hansel, Mato, and
Meunier, 1995). These results suggest that the short
rise time facilitates the synchronization in the small
network. However, our results show that the rise time
of the synaptic interaction gives smaller effects on the
overall bifurcation structure than that of the decay
time. It might be because our network contains very
large number of neurons, and the effect of a single
pulse is scaled as ∼ N−1

X (X = E or I) and negligi-
ble. In such a network, the bifurcation structure might
be determined by the characteristic time scale of the
synaptic input IXY (t). In our configuration, the de-
cay time is longer than the rise time (κ1 ≥ κ2), so it
is dominant in IXY (t).

Let us consider the roles of inhibition. In our net-
work, the synchronized firings are not observed with-
out inhibitory neurons (see bifurcation set at gext = 0),
and it might be because our network is composed of
excitable neurons. Although the period of the firings
of networks of self-oscillating excitatory neurons is typ-
ically determined by the period of a single neuron, it
can take various values depending on the parameters
in the network of excitable neurons with excitatory
and inhibitory connections. Typically, the period is
long around the saddle-node on limit cycle bifurcation
and the homoclinic bifurcation, and it is short around
the Hopf bifurcation. Note that the period of the fir-
ings near the Hopf bifurcation can take large values
if the activities of excitatory and inhibitory ensembles

are balanced and weakly synchronized periodic firings
are realized (Kanamaru and Sekine, 2004).

In the analysis of the pulse-coupled network, it is
found that its bifurcation structure is similar to that
of the network with the waveform-coupling written
by equation 2.8 (Kanamaru and Sekine, 2003). The
width of the pulse which is injected to the next neu-
ron with the waveform-coupling is as large as Δ ∼ 5,
and the width of the interaction of the pulse-coupled
neuron is infinitesimal. Thus, this similarity seems to
be strange. This contradiction might be explained as
follows. In the network with the waveform-coupling
or the pulse-coupling, each neuron has its characteris-
tic time scale determined by (τE , a) or (τI , a), and, by
the coupling, the additional characteristic time scale
is not introduced to the network because the interac-
tion with the waveform-coupling has the same charac-
teristic time scale as the neuron, and the interaction
with the pulse-coupling does not have a characteris-
tic time scale. On the other hand, in the network
with the other couplings such as the exponential cou-
pling, a new characteristic time scale of the synapse
is introduced to the network, so its dynamics becomes
complex.

Hoppensteadt and Izhikevich considered weakly
connected networks of class 1 neurons which are close
to the saddle-node bifurcation point, and derived a
canonical model which is described by phase variables
connected with the pulse-coupling (Hoppensteadt and
Izhikevich, 1997; Izhikevich, 1999). Because of the
closeness to the bifurcation point, the characteristic
time scale of the neuron is long, and the characteris-
tic time scale of the coupling becomes relatively short.
Thus, the pulse-coupling is justified in the canonical
model. The behavior of this canonical model is ex-
pected to be similar to that of our pulse-coupled active
rotators. On the other hand, when the neuron is away
from the bifurcation point, the approximation with the
pulse-coupling does not hold, so the couplings such as
the double exponential coupling might be required. In
such a network, the synchronized firings appear mainly
through the Hopf bifurcation or the homoclinic bifur-
cation, and the synchronized periodic firings with large
cycles and the synchronized chaotic firings are typi-
cally observed in a wide range of parameters. This
ubiquity of the chaotic firings might suggests the im-
portance of chaos in the brain dynamics.

In the present paper, for simplicity, we treated
only the case where the time constants of the exci-
tatory neurons and the inhibitory neurons are identi-
cal. Kanamaru and Sekine (2004) treated a network
with the waveform-coupling which has different time
constants τE = 1 and τI = 2, and it was found that
its dynamics is more complex than that of the net-
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work with τE = τI = 1. Moreover, the weakly syn-
chronized periodic firings which are often observed in
the physiological experiments (Gray and Singer, 1989;
Buzsáki et al., 1992; Fisahn, Pike, Buhl, and Paulsen,
1998) are also observed in the network with τE = 1
and τI = 2. The physiological neurons have many
characteristic time scales such as those of the various
ion channels and the synaptic interactions, and it is
known that the excitatory neurons and the inhibitory
neurons have different values of time constants. Thus,
it would be important to find dominant characteristic
time scales in the physiological system and to incor-
porate it to the theoretical model.

A Numerical integration of the

Fokker-Planck equation

In this section, we give a method for the numerical
integration of Fokker-Planck equations 2.9 and 2.10.
Two densities given by equations 2.13 and 2.14 are 2π-
periodic functions of θE and θI , respectively, so they
can be expanded as

nE(θE , t) =
1
2π

+
∞∑

k=1

(aE
k (t) cos(kθE) + bE

k (t) sin(kθE)),(A.1)

nI(θI , t) =
1
2π

+
∞∑

k=1

(aI
k(t) cos(kθI) + bI

k(t) sin(kθI)), (A.2)

and, by substituting them, 2.9 and 2.10 are trans-
formed into a set of ordinary differential equations ẋ =
f(x) where x = (aE

1 , bE
1 , aI

1, b
I
1, a

E
2 , bE

2 , aI
2, b

I
2, · · ·)t,

da
(X)
k

dt
= − k

τX
(1 + IX)b(X)

k +
ak

2τX
(a(X)

k−1 − a
(X)
k+1)

−k2D

2τ2
X

a
(X)
k , (A.3)

db
(X)
k

dt
=

k

τX
(1 + IX)a(X)

k +
ak

2τX
(b(X)

k−1 − b
(X)
k+1)

−k2D

2τ2
X

b
(X)
k , (A.4)

IE ≡ IEE − IEI , (A.5)
II ≡ IIE − III , (A.6)

a
(X)
0 ≡ 1

π
, (A.7)

b
(X)
0 ≡ 0, (A.8)

k ≥ 1, and X = E or I. These ordinary differential
equations are numerically integrated with the forth-

order Runge-Kutta algorithm.

Acknowledgement

T.K. is grateful to Dr. T. Horita for his careful read-
ing of the manuscript. This research was partially sup-
ported by a Grant-in-Aid for Encouragement of Young
Scientists (B) (No. 14780260) from the Ministry of
Education, Culture, Sports, Science, and Technology,
Japan.

References
Abbott, L. F., and van Vreeswijk, C. (1993)
Asynchronous states in networks of pulse-coupled
oscillators. Physical Review E, 48, 1483–1490.

Börgers, C., and Kopell, N. (2003). Synchronization
in networks of excitatory and inhibitory neurons with
sparse, random connectivity. Neural Computation,
15, 509–538.

Brunel, N. (2000). Dynamics of sparsely connected
networks of excitatory and inhibitory spiking
neurons. Journal of Computational Neuroscience, 8,
183–208.
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