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Abstract

To study the synchronized oscillations among distant
neurons in the visual cortex, the synchronization be-
tween two modules of pulse neural networks was ana-
lyzed using the phase response function. It was found
that the inter-module connections from excitatory to
excitatory ensembles tend to stabilize the anti-phase
synchronization, and that the inter-module connections
from excitatory to inhibitory ensembles tend to stabilize
the in-phase synchronization. It was also found that the
inter-module synchronization was more noticeable when
the inner-module synchronization was weak.

1 Introduction

The average behavior of neurons often shows synchro-
nized oscillations in many areas of the brain, e.g., in the
visual cortex (Gray & Singer, 1989), the hippocampus
(Buzsáki, Horváth, Urioste, Hetke, & Wise, 1992; Bra-
gin, Jandó, Nádasdy, Hetke, Wise, & Buzsáki, 1995),
the auditory neocortex (Traub, Bibbig, LeBeau, Cun-
ningham, & Whittington, 2005), and the entorhinal cor-
tex (Cunningham, Davies, Buhl, Kopell, & Whittington,
2003), and they have attracted considerable attention in
past 20 years. Synchronized oscillations with gamma
frequency (20∼70 Hz) among nearby neurons with over-
lapping receptive fields have been observed in the visual
cortex. Moreover, when correlated visual stimulations
were presented, synchronized oscillations were observed
even among distant neurons that had non-overlapping
receptive fields and that were separated by 7mm. Based
on such observations, it was proposed that the corre-
lations among neuronal activities might be related to
the binding of visual information (for reviews, see Gray
(1994)).
Several mechanisms likely contribute to the genera-

tion of such synchronized oscillations in the visual cor-
tex. First, the lateral geniculate nucleus (LGN) often

provides oscillating inputs to the visual cortex. How-
ever, the range of projections from the LGN cannot ex-
plain the cortical synchronization among distant neu-
rons. Therefore, the synchronized oscillations in the
visual cortex are thought to be generated by an intra-
cortical mechanism, and not by oscillating inputs from
the LGN (Gray & Singer, 1989). However, it is un-
known whether the oscillations are caused by the prop-
erties of single neurons or by intra-cortical network in-
teractions. As for the theory that the oscillations are
caused by the properties of single neurons, it was re-
ported that chattering cells in the visual cortex show
periodic bursts of gamma frequency, which might be re-
lated to the generation of oscillatory responses (Gray &
McCormick, 1996). On the other hand, many physio-
logical evidences support the theory that the oscillations
are generated by intra-cortical network interactions (Ja-
gadeesh, Gray, & Ferster, 1992; Gray 1994). In the
hippocampus, it was reported that the network that
contains inhibitory neurons contributes to the genera-
tion of oscillations (Buzsáki, Horváth, Urioste, Hetke,
& Wise, 1992; Whittington, Traub, & Jefferys, 1995;
Fisahn, Pike, Buhl, & Paulsen, 1998).

Concerning the generation of synchronized oscillations
in the neuronal network, we have been studying pulse
neural networks that are composed of excitatory neu-
rons and inhibitory neurons. In previous studies, the
dynamics of a single module consisting of a network were
analyzed using the Fokker-Planck equation, and vari-
ous synchronized firings were found depending on the
values of the parameters (Kanamaru & Sekine, 2004,
2005). Such synchronized firings might be related to
the synchronized oscillations among nearby neurons. In
the present study, in order to elucidate the mechanism
of synchronized oscillations among distant neurons, we
analyzed the synchronization between two modules of
networks, in which each module was composed of exci-
tatory neurons and inhibitory neurons. Ermentrout and
Kopell (1998) analyzed a similar network of two mod-
ules, each of which contained an excitatory cell (E-cell)
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and an inhibitory cell (I-cell). The E-cell and I-cell each
represented populations of neurons, and their dynam-
ics obeyed the equations for the spiking neuron model.
Therefore, the neurons in each population were assumed
to be perfectly synchronized. However, when the neu-
rons in each module are not perfectly synchronized but
are partially synchronized (van Vreeswijk, 1996), their
analysis cannot hold because each neuron in a module
receives many pulses from other neurons in that module
and from neurons in the other module. In our model,
perfect synchronization is not realized because of noise;
therefore, probabilistic representations are required to
describe the dynamics of each module. In section 2,
the definition of a module of pulse neural network is
given, and its dynamics are analyzed using the Fokker-
Planck equation. Some examples of synchronized firings
are presented. In section 3, a system with two modules
of networks is introduced, and the inter-module synchro-
nization is analyzed using the phase response function
(Kuramoto, 1984; Ermentrout & Kopell, 1991; Ermen-
trout, 1996; Ermentrout, Pascal, & Gutkin, 2001; No-
mura, Fukai, & Aoyagi, 2003). As a result, it was found
that the inter-module connections from excitatory to ex-
citatory ensembles tend to stabilize the anti-phase syn-
chronization, and the inter-module connections from ex-
citatory to inhibitory ensembles tend to stabilize the in-
phase synchronization. Moreover, it was found that the
inter-module synchronization is more noticeable when
the inner-module synchronization is weak. The final sec-
tion provides a discussion and conclusions.

2 One-Module System

In this section, we consider a module of a pulse neural
network composed of excitatory neurons with internal
states θ(i)E (i = 1, 2, · · · , NE) and inhibitory neurons with
internal states θ(i)I (i = 1, 2, · · · , NI) that are written as

˙
θ
(i)
E = (1− cos θ(i)E ) + (1 + cos θ

(i)
E )

×(rE + ξ(i)E (t) + gEEIE(t)− gEIII(t)),(2.1)
˙
θ
(i)
I = (1− cos θ(i)I ) + (1 + cos θ

(i)
I )

×(rI + ξ(i)I (t) + gIEIE(t)− gIIII(t)),(2.2)

IX(t) =
1
NX

NX∑
i=1

δ(θ(i)X − π), (2.3)

〈ξ(i)X (t)ξ
(j)
Y (t′)〉 = DδXY δijδ(t− t′), (2.4)

where X,Y = E or I, gXY is the connection strength
from ensemble Y to ensemble X , rE and rI are sys-
tem parameters, and δXY and δij are Kronecker’s deltas.
IX(t) is the synaptic inputs from ensembleX , and ξ

(i)
X (t)

is noise in the i-th neuron in ensemble X . In the follow-
ing, we call this network with excitatory and inhibitory
ensembles as the one-module system. The dynamics of
this one-module system are nearly identical with the dy-
namics of the pulse-coupled active rotators analyzed by

Kanamaru and Sekine (2005). Therefore, we will briefly
describe it here. Note that the model of neurons with
θ̇ = (1 − cos θ) + (1 + cos θ)r is the canonical model
of class 1 neurons (Ermentrout & Kopell, 1986; Ermen-
trout, 1996), and arbitrary class 1 neurons near their
bifurcation points can be transformed into the canonical
model. The canonical model was previously extended to
the network of weakly connected class 1 neurons (Hop-
pensteadt & Izhikevich, 1997; Izhikevich, 1999), and the
system governed by equations 2.1, 2.2, and 2.3 has the
form of this canonical model of weakly connected class
1 neurons. Thus, the networks of the weakly connected
arbitrary class 1 neurons with global connections can be
transformed into the above form with the appropriate
change of variables. Here we restrict the parameters so
that the system parameters rE and rI and the noise in-
tensity D are uniform in the network. Moreover, the
restrictions gEE = gII ≡ gint = 4 and gEI = gIE ≡ gext

are placed on the connection strengths for simplicity.
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Figure 1: Bifurcation set in the (D, gext) plane for rE =
−0.025 and rI = −0.05. SN, saddle-node; SNL, saddle-
node-on-limit-cycle; DLC, double limit cycle.

In the absence of noise ξ(i)X (t) and synaptic input
IX(t), a single neuron shows self-oscillation for rX > 0.
For rX < 0, this neuron becomes an excitable system
with a stable equilibrium written by

θ0 = − arccos 1 + rX
1− rX , (2.5)

in which θ0 is close to zero for rX ∼ 0. We define the
firing time of the neuron as the time at which θ(i)X ex-
ceeds π because π is away from θ0 (∼ 0). Note that the
relation

˙
θ
(i)
E =

˙
θ
(i)
I = 2 > 0 holds at θ = π independent

of the synaptic input IX(t) and the noise ξ
(i)
X (t); there-

fore the firing of the neuron can be defined naturally.
In the following, we use values of the parameter where
rX < 0 and we consider the dynamics of the networks of
excitable neurons.
Note that the synaptic input IX(t) from ensemble X
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Figure 2: Synchronized firings of neurons in the one-module system in the case where rE = −0.025 and rI = −0.05.
(A), (C), and (E) Change in the probability flux JE over time at θE = π. (B), (D), and (F) Raster plots of the
firing times of the excitatory neurons in the system with NE = NI = 1000. (A), (B) Synchronized firings of neurons
where D and gext/gint are near the saddle-node-on-limit-cycle bifurcation. The results in the case of D = 0.005,
gext/gint = 0.5, and gint = 4 are shown. (C), (D) Synchronized firings of neurons where D and gext/gint are near
the Hopf bifurcation. The results in the case of D = 0.02, gext/gint = 0.5, and gint = 4 are shown. (E), (F) Weakly
synchronized periodic firings of neurons where D = 0.005, gext/gint = 1.5, and gint = 4.

can be rewritten as

IX(t) =
1

2NX

NX∑
i=1

∑
j

δ(t− t(i)j ), (2.6)

where t(i)j is the j-th firing time of the i-th neuron in
ensemble X .
In the limit of NE , NI → ∞, the average behavior of

neurons in the system can be analyzed with the Fokker-
Planck equations which describe the development of the
probability density of the system over time as shown
in Appendix A. It is notable that asynchronous firings
and synchronized firings of neurons in the network cor-
respond to a stationary solution and a time-varying so-
lution of the Fokker-Planck equations, respectively. Us-
ing the Fokker-Planck equations, a bifurcation set is ob-
tained numerically by the method shown in Appendix B,

and the bifurcation set for the parameters rE = −0.025
and rI = −0.05 is shown in Figure 1. Generally, syn-
chronized firings of neurons are observed when the cho-
sen values of noise intensity D and connection strength
gext are in the area enclosed by the SNL (saddle-node-
on-limit-cycle) and Hopf bifurcation lines (Figure 1). For
more detailed information about the bifurcation, please
see the paper published by Kanamaru and Sekine (2005).
Typical synchronized firings of neurons in a one-

module system are shown in Figure 2. The change in
the probability flux JE , which is defined in Appendix A,
at θE = π over time for various values ofD and gext/gint,
are shown in Figures 2A, 2C, and 2E. Note that the prob-
ability flux JE can be interpreted as the instantaneous
firing rate of the excitatory ensemble. The raster plots of
the firing times of the excitatory neurons in the system
with NE = NI = 1000 are shown in Figures 2B, 2D, and
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2F. As shown in Figures 2A and 2B, in cases where D
and gext/gint are near the saddle-node-on-limit-cycle bi-
furcation, the synchronized firings of neurons have strong
correlations and long periods because the system stays a
long time in the area where the original saddle and node
existed. As shown in Figures 2C and 2D, in cases where
D and gext/gint are near the Hopf bifurcation, the syn-
chronized firings of neurons have weak correlations and
high frequencies because a limit cycle that corresponds
to these synchronized firings is created around the sta-
ble equilibrium with large probability fluxes. The syn-
chronized firings of neurons shown in Figures 2E and 2F
are weakly synchronized periodic firings (Kanamaru &
Sekine, 2004) where only a small percentage of the neu-
rons fire in each period. Such firings are realized when
the peak value of the probability flux JE is very small as
shown in Figure 2E, and when each neuron receives sub-
threshold periodic inputs. We assume that these weakly
synchronized periodic firings may be related to the phys-
iologically observed synchronized firings because their
degree of synchronization is also weak (Gray & Singer,
1989; Buzsáki, Horváth, Urioste, Hetke, & Wise, 1992;
Fisahn, Pike, Buhl, & Paulsen, 1998). However, in the
physiological environment, the properties of single neu-
rons are not uniform and the structures of the networks
are more complex. Therefore, more detailed theoretical
analyses are required to validate the presence of neurons
with weakly synchronized periodic firings in physiologi-
cal environments.

3 Two-Module System

In this section, to study the mechanism of the synchro-
nized oscillations among distant neurons, we consider
the two-module system in which the internal states of
the neurons are defined as:

˙
θ
(i)
Ek
= (1 − cos θ(i)Ek

) + (1 + cos θ(i)Ek
)

×(rEk
+ ξ(i)Ek

(t) + gEkEk
IEk
(t)− gEkIk

IIk
(t)

+εEkEl
IEl
(t)− εEkIl

IIl
(t)), (3.1)

˙
θ
(i)
Ik
= (1− cos θ(i)Ik

) + (1 + cos θ(i)Ik
)

×(rIk
+ ξ(i)Ik

(t) + gIkEk
IEk
(t)− gIkIk

IIk
(t),

+εIkEl
IEl
(t)− εIkIl

IIl
(t)), (3.2)

l ≡ 3− k, (3.3)

where k = 1, 2 and represents the first and second
modules, respectively. For simplicity, we set the inner-
module connection strengths as gXkYk

= gXY and the
inter-module connection strengths as εXkYl

≡ εXY (k 
=
l). Moreover, we assume that the inter-module connec-
tion strengths are very weak, namely, εXY � 1, and that
the inter-module connections originate only from the ex-
citatory ensembles, namely, εEI = εII = 0, because
the inter-columnar long-range connections in the cortex
are excitatory (Gilbert & Wiesel, 1983; Ts’o, Gilbert, &
Wiesel, 1986).
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Figure 3: (A) Dependence of the stationary phase differ-
ences between the two modules of a two-module system
on the connection ratio γ in the case where rE = −0.025,
rI = −0.05, D = 0.005, gext/gint = 0.5, and gint = 4.
The phase variable is normalized with the period T . The
solid and dotted lines denote the stable and unstable
phase differences, respectively. (B) Change in JE over
time in the case where γ = 0.5. The solid and dotted
lines denote modules 1 and 2, respectively. (C) Raster
plot of the firing times of excitatory neurons in a two-
module system where NE = NI = 1000. In (B) and
(C), the inter-module connection strengths were set at
εEE = εIE = 0.025.

A similar network of two modules, each of which con-
tains an excitatory cell (E-cell) and an inhibitory cell (I-
cell), was previously analyzed by Ermentrout and Kopell
(1998). The E-cell and I-cell each represented popula-
tions of neurons, and their dynamics obeyed the equa-
tions for the spiking neuron model. The neurons in
each population were assumed to have perfectly synchro-
nized firings. However, as shown in Figure 2, our inner-
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module neurons do not show perfectly synchronized fir-
ings; therefore, the average behavior of the neurons in
each module cannot be represented by that of a single
neuron. Instead, we use the probabilistic representation
of the Fokker-Planck equation to describe the dynamics
of each module.
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Figure 4: Dependence of the stationary phase differ-
ences between the two modules of a two-module system
on the connection ratio γ in the case where D = 0.02,
gext/gint = 0.5, and gint = 4. The explanations are the
same as those in Figure 3 except for the values of the
parameters.

In the limit of NEk
, NIk

→ ∞, the dynamics of the
probability density of each module are governed by the
Fokker-Planck equation shown in Appendix A, and the
Fourier coefficients of the probability densities follow the
ordinary differential equation ẋ = f(x), which is de-
fined in Appendix B. When each module shows inner-
module synchronized firings, the vector x moves on a
limit cycle x = x0(t). In a system of two modules that
have weak inter-module connections εXY , the two limit

cycles are connected weakly, and such system can be
analyzed using the phase response function (Kuramoto,
1984; Ermentrout & Kopell, 1991; Ermentrout, 1996;
Ermentrout, Pascal, & Gutkin, 2001; Nomura, Fukai,
& Aoyagi, 2003), as summarized in Appendix C. Us-
ing this method, we can transform the weakly connected
ordinary differential equation ẋ = f(x) of the Fourier
coefficients into the averaged phase equations C.5 and
C.6, and we can analyze the stationary phase differences
using C.10.
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Figure 5: Dependence of the stationary phase differences
between the two modules of a two-module system on
the connection ratio γ in the case where D = 0.005,
gext/gint = 1.5, and gint = 4. The explanations are the
same as those in Figure 3 except for the values of the
parameters.

The dependence of the stationary phase differences on
the ratio γ, which is defined as

εEE : εIE = 1− γ : γ, (3.4)

in cases with different values of D and gext/gint is shown
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Figure 6: The phase responses ΓδE and ΓδI upon injection of the delta function to the excitatory or inhibitory
ensemble, respectively. (A), (C), and (E) Change in JE and JI over time during a single period. (B), (D), and (F)
Phase responses. The parameters are shown in each figure.

in Figures 3, 4, and 5. In the following, in-phase and
anti-phase synchronizations are defined as the station-
ary solution with phase difference ∆φ = 0 or ∆φ = 0.5,
respectively. In all cases, it was found that the con-
nections from excitatory to excitatory ensembles (εEE)
tended to stabilize the anti-phase synchronization, while
the connections from excitatory to inhibitory ensem-
bles (εIE) tended to stabilize the in-phase synchroniza-
tion. However, when the inner-module synchronizations
were strong (Figure 3), the anti-phase synchronization
remained stable even when εIE was large, and there-
fore inter-module synchronization was harder to attain
than in other cases. On the other hand, when the inner-
module synchronizations were weak (Figure 5), the in-
phase synchronization was stable over a wide range of
γ, and therefore inter-module synchronization was eas-

ily attained.
As shown above, εEE and εIE contribute to the inter-

module synchronization in different ways, because their
phase responses have different properties. Note that the
phase response describes the change in frequency at φ in
response to small perturbations, as shown in Appendix
C. The phase response function Z(t) is a vector func-
tion whose components represent the effects of inputs to
the Fourier components of the Fokker-Planck equation.
To make the phase response easier to understand, the
phase responses ΓδE and ΓδI upon injection of the delta
function into the excitatory or inhibitory ensemble, are
calculated by equation C.7 and the results are shown
in Figure 6 for three sets of parameters. Generally, the
two phase responses have opposite signs in three cases;
therefore, it can be concluded that the connections to
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excitatory and inhibitory ensembles have opposite syn-
chronization properties. Moreover, when the system is
close to the saddle-node-on-limit-cycle bifurcation point
(Figures 3, 6A, and 6B), the phase response of the in-
hibitory ensemble is much smaller than that of the exci-
tatory ensemble. Thus, the in-phase synchronization is
hard to attain in Figure 3. Although the phase responses
in Figures 6D and 6F have similar forms, the amplitude
of JI is smaller than that of JE in Figure 6C. Thus, the
effect of the inhibitory ensemble is weak when the sys-
tem is close to the Hopf bifurcation point and its firing
rates are high (Figures 4, 6C, and 6D), and the in-phase
synchronization is harder to attain than the weakly syn-
chronized periodic firings in Figure 5.
Next, let us consider a system with a transmission

delay d between two modules. Such a system can be
analyzed with the equation

Γd(φα −φα′) =
1
T

∫ T

0

Z(t+φα) ·p(t+φα, t+φα′ −d)dt,
(3.5)

which was obtained by incorporating the delay d to
Γ(φα − φα′) in equation C.7 (Hansel, Mato, & Meunier,
1995). The areas where the in-phase or anti-phase syn-
chronization is stable are obtained numerically, and their
dependence on the connection rate γ and the delay d is
shown in Figure 7, where the delay is normalized by the
period T . It is observed that in cases where d is small,
εIE stabilizes the in-phase synchronization, and in cases
where d is large, εEE stabilizes the in-phase synchroniza-
tion. Let us consider the physiologically valid values of d
for a gamma oscillation of 40 Hz (T = 25 ms). The major
components of the delay in signal transmission between
two neurons are transmission delay on the axon and the
synaptic delay to transmit the signal across the synap-
tic cleft (Nicholls, Martin, Wallace, & Fuchs, 2001). Be-
cause the conduction velocity along a myelinated axon is
1∼ 100 m/s, the conduction delay between two neurons
separated by 7 mm is estimated to be 0.07 ∼ 7 ms. The
synaptic delay is known to be about 1 ∼ 2 ms. Thus,
we roughly estimated that d < 10 ms and obtained the
relationship d/T < 0.4. Under this condition, εIE stabi-
lizes the in-phase synchronization, as shown in Figure 7.
Moreover, for d/T < 0.4, the area with stable in-phase
synchronization was widest for the weakly synchronized
periodic firings (Figure 7C).

4 Discussion and Conclusions

To study the mechanism through which synchronized os-
cillations occur in the brain, we analyzed the properties
of synchronization of class 1 pulse neural networks.
In the one-module system which was composed of

excitatory and inhibitory neurons, various synchro-
nized firings were observed depending on the connec-
tion strengths and the noise intensity, and they might
be related to the synchronized oscillations with gamma
frequency among nearby neurons in the visual cortex.

Note that such synchronized firings can be observed only
when the excitatory neurons and inhibitory neurons are
connected with each other (see the area with gext = 0
in Figure 1). In other words, the synchronized firings
observed in our model were generated by the interac-
tions between the excitatory ensemble and inhibitory en-
semble in the network. On the other hand, it is known
that self-oscillating neurons that consist of only excita-
tory (or inhibitory) neurons in a network can synchro-
nize with each other (Mirollo & Strogatz, 1990). This
difference might arise because our network is composed
of excitable, but not self-oscillating, neurons.
To elucidate the mechanism by which synchronized

oscillations occur among distant neurons, we analyzed
the synchronization between two modules of networks
using the phase response function. A similar network
of two modules, each of which showed perfect synchro-
nization, was previously analyzed by Ermentrout and
Kopell (1998). However, as shown in Figure 2, the neu-
rons in our module do not show perfect synchroniza-
tion; therefore, a probabilistic representation with the
Fokker-Planck equation was required to describe the dy-
namics of each module. As a result, it was found that
the inter-module connections from excitatory to excita-
tory (E → E) ensembles tended to stabilize the anti-
phase synchronization, while the inter-module connec-
tions from excitatory to inhibitory (E → I) ensembles
tended to stabilize the in-phase synchronization. More-
over, it was found that inter-module synchronization was
more easily attained when the inner-module synchro-
nizations were weak.
Our finding that the E → E inter-module connec-

tions stabilize anti-phase synchronization is analogous
to the previous results that a pair of excitatory neurons
with slow connections have a stable anti-phase solution
(Hansel, Mato, & Meunier, 1995; van Vreeswijk, 1996;
Sato & Shiino, 2002). Moreover, our finding that the
E → I inter-module connections tend to stabilize the
in-phase synchronization, is similar to the previous re-
sult that the E → I and I → E connections stabilize
the in-phase synchronization despite the existence of a
delay (Ermentrout & Kopell, 1998). However, the mech-
anism of synchronization in their model differs from that
in our model. In the model of Ermentrout and Kopell
(1998), the timing of the pulses played important roles
in synchronization because their network contained only
four neurons, namely, two E-cells and two I-cells. They
stated that a pair of pulses (doublet) of the I-cell was
important in the process of synchronization. However,
in our network, there are many neurons and each neuron
receives many pulses from other neurons (see Figures 2B,
2D, and 2F). Therefore, the timing of the pulses is less
important in our model than in their model. Neverthe-
less, similar results on the roles of E → I connections
were obtained. Moreover, in our model, it was found
that the degree of synchronization in one module affects
the properties of the inter-module synchronization.
In summary, in our model, the oscillations in a neu-
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Figure 7: Areas where the in-phase or anti-phase synchronization is stable in the (γ, d) plane. The solid and
dotted lines are the boundaries for the stable region of the in-phase or anti-phase synchronization, respectively.
The delay d is normalized with the period T . The in-phase synchronization is stable in the areas labeled “I”, and,
the anti-phase synchronization is stable in the areas labeled “A”. The other stable phase differences are omitted
for simplicity.

ronal ensemble were generated by a local network com-
posed of excitatory neurons and inhibitory neurons, and
their synchronization was realized by the long-range con-
nections from excitatory to inhibitory ensembles. We
modeled the average dynamics of the module using prob-
abilistic representation with the Fokker-Planck equation.
In physiological environments, the properties of single
neurons are not uniform and the networks are more com-
plex; therefore, probabilistic representation may be cru-
cial for understanding their dynamics. However, in the
present research, we assumed that the properties of the
neurons and the structure of the module were uniform.
Therefore, more detailed analyses are required. More-
over, we confirmed that the analysis with the phase re-
sponse function is applicable to the stochastic system
whose average dynamics obey the Fokker-Planck equa-
tion. It is known that the phase response function can
be calculated from physiological data (Reyes & Fetz,

1993a,b; Jones, Mulloney, Kaper, & Kopell, 2003); there-
fore, our method might widen application of the phase
response function in theoretical and experimental fields.

A The Fokker-Planck Equation
for the One-Module System

To analyze the dynamics of the one-module system, we
use the Fokker-Planck equations (Kuramoto, 1984; Ger-
stner & Kistler, 2002) which are written as

∂nE

∂t
= − ∂

∂θE
(AEnE)

+
D

2
∂

∂θE

{
BE

∂

∂θE
(BEnE)

}
, (A.1)

∂nI

∂t
= − ∂

∂θI
(AInI)
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+
D

2
∂

∂θI

{
BI

∂

∂θI
(BInI)

}
, (A.2)

AE(θE , t) = (1 − cos θE) + (1 + cos θE)
×(rE + gEEIE(t) − gEIII(t)),(A.3)

AI(θI , t) = (1 − cos θI) + (1 + cos θI)
×(rI + gEEIE(t)− gIIII(t)), (A.4)

BE(θE , t) = 1 + cos θE , (A.5)
BI(θI , t) = 1 + cos θI , (A.6)

for the normalized number densities of excitatory and
inhibitory neurons, in which

nE(θE , t) ≡ 1
NE

NE∑
i=1

δ(θ(i)E − θE), (A.7)

nI(θI , t) ≡ 1
NI

NI∑
i=1

δ(θ(i)I − θI), (A.8)

in the limit of NE, NI → ∞. The probability flux for
each ensemble is defined as

JE(θE , t) = AEnE − D

2
BE

∂

∂θE
(BEnE), (A.9)

JI(θI , t) = AInI − D

2
BI

∂

∂θI
(BInI), (A.10)

respectively. In the limit of NX → ∞, IX(t) in equation
2.6 follows an equation that is written as

IX(t) =
1
2
JX(t), (A.11)

= n(π, t), (A.12)

where JX(t) ≡ JX(π, t) is the probability flux at θX = π.
By integrating the Fokker-Planck equations A.1 and

A.2 with equation A.12, the dynamics of the network
governed by equations 2.1 and 2.2 can be analyzed.

B Numerical Integration of the
Fokker-Planck Equations

In this section, we provide a method of performing nu-
merical integration of the Fokker-Planck equations A.1
and A.2. Because the normalized number densities given
by equations A.7 and A.8 are 2π-periodic functions of θE
and θI , respectively, they can be expanded as

nE(θE , t) =
1
2π
+

∞∑
k=1

(aE
k (t) cos(kθE) + b

E
k (t) sin(kθE)),

(B.1)

nI(θI , t) =
1
2π
+

∞∑
k=1

(aI
k(t) cos(kθI) + b

I
k(t) sin(kθI)),

(B.2)

and, by substituting them, equations A.1 and A.2 are
transformed into an ordinary differential equation ẋ =

f(x) where x ≡ (aE
1 , b

E
1 , a

I
1, b

I
1, a

E
2 , b

E
2 , a

I
2, b

I
2, · · ·)t,

da
(X)
k

dt
= −(rX +KX + 1)kb

(X)
k

−(rX +KX − 1)k
2
(b(X)

k−1 + b
(X)
k+1)

−Dk
8
g(a(X)

k ), (B.3)

db
(X)
k

dt
= (rX +KX + 1)ka

(X)
k

+(rX +KX − 1)k
2
(a(X)

k−1 + a
(X)
k+1)

−Dk
8
g(b(X)

k ), (B.4)

g(xk) = (k − 1)xk−2 + 2(2k − 1)xk−1 + 6kxk

+2(2k + 1)xk+1 + (k + 1)xk+2, (B.5)
KX ≡ gXEIE − gXIII , (B.6)

a
(X)
0 ≡ 1

π
, (B.7)

b
(X)
0 ≡ 0, (B.8)

andX = E or I. By integrating this ordinary differential
equation numerically, the time series of the probability
fluxes JE and JI are obtained. For numerical calcula-
tions, each Fourier series is truncated at the first 40 or
60 terms.
The bifurcation lines of the Hopf bifurcation and the

saddle-node bifurcation in Figure 1 were obtained as
follows. First, a stationary solution xs was numeri-
cally obtained by the Newton method (Press, Flannery,
Teukolsky, & Vetterling, 1988), and the eigenvalues of
the Jacobian matrix Df(xs) which had been numeri-
cally obtained by using the QR algorithm (Press, Flan-
nery, Teukolsky, & Vetterling, 1988), were examined to
find the bifurcation lines. On the other hand, the bifur-
cation lines of the global bifurcations such as the homo-
clinic bifurcation and the double limit-cycle bifurcation,
were obtained by observing the long-time behaviors of
the solutions of ẋ = f(x).

C Analysis with the Phase Re-

sponse Function

In this section, we summarize the method of analyzing
the dynamics of two weakly coupled oscillators.
Let us consider a dynamical system ẋ = f(x) that

has a stable limit cycle with period T as its solution,
which was written as x = x0(t) (x0(t) = x0(t + T )),
and then introduce a weak perturbation p(x,x′) from
the other module x′. Then, the dynamics of the module
are governed by a differential equation written as

ẋ = f(x) + p(x,x′), (C.1)

and it can be reduced to

φ̇ = 1 +Z(φ) · p(x0,x
′
0), (C.2)
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where φ = t mod T and Z(φ) is the phase response
function that describes the change in frequency at φ in
response to small perturbations (Kuramoto, 1984; Er-
mentrout & Kopell, 1991 ;Ermentrout, 1996; Ermen-
trout, Pascal, & Gutkin, 2001; Nomura, Fukai, & Aoy-
agi, 2003). Z(φ) can be numerically obtained using the
method shown by Ermentrout (1996). First, let us con-
sider a linear differential equation

Ż = −Df(x0(t))t · Z(t), (C.3)

and integrate backward in time with random initial con-
ditions. After Z(t) converges to a periodic orbit, nor-
malization

1
T

∫ T

0

Z(t) · ẋ0(t)dt = 1 (C.4)

is performed, and Z(t) is obtained. Let us denote the
phases of the two modules as φ1 and φ2, respectively.
After averaging, the two phases obey

φ̇1 = 1 + Γ(φ1 − φ2), (C.5)
φ̇2 = 1 + Γ(φ2 − φ1), (C.6)

Γ(φα − φα′) =
1
T

∫ T

0

Z(t+ φα) · p(t+ φα, t+ φα′)dt,

(C.7)
p(t+ φα, t+ φα′ ) = p(x0(t+ φα),x0(t+ φα′)). (C.8)

Using Γ(φ), the phase difference ∆φ ≡ φ1 − φ2 of the
two phases obeys

∆φ̇ = Γ(∆φ) − Γ(−∆φ), (C.9)
≡ Γodd(∆φ). (C.10)

We can obtain the stable phase difference ∆φ which sat-
isfies Γodd(∆φ) = 0 and Γ′odd(∆φ) < 0.
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