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Abstract

The globally connected active rotators with excitatory and inhibitory connections are analyzed

using the nonlinear Fokker-Planck equation. The bifurcation diagram of the system is obtained nu-

merically, and both periodic solutions and chaotic solutions are found. By observing the interspike

interval, the coefficient of variance, and the correlation coefficient of the system, the relationship

of our model to the biological data is discussed.
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I. INTRODUCTION

Recently, in the analyses of the experimental data obtained from the brain, the pulse

trains from a single neuron and the correlations in the neuronal ensembles with various

sizes have attracted considerable attentions, and their roles in information processing are

discussed by numerous authors [1–5].

In Refs. [1–4], the apparently stochastic pulse trains from single neurons in the cortex

are investigated, and the importance of the precise timing of each firing is examined. The

role of a single pulse in the brain function is still controversial, but some experimental and

theoretical researches have shown that the timing of the firings of single neurons is reliable

and it can be a candidate for the carrier of the information in the brain [6–8].

On the other hand, the neuronal networks in the visual cortex and the hippocampus often

show oscillatory behaviors, which imply that the neurons in the network emit the spikes

synchronously (for reviews, see Ref. [5]). It is suggested that such synchronized oscillations

contribute to the information processing, e.g., the bindings of the visual informations in the

visual cortex and the control of the synaptic plasticity in the hippocampus.

These experimental researches suggest that the theoretical analyses of the pulse neural

networks are of importance to understand the brain function from the neuronal level [9].

To analyze the stochastic system governed by a Langevin equation, the Fokker-Planck

equation is often used to describe the dynamics of the probability density of the system [10],

and it is also applicable to the pulse neural networks. In Ref. [11], sparsely connected leaky

integrate-and-fire models are analyzed by the Fokker-Planck equation. Under the condition

of the sparse connection, the network are reduced to a single element with an input from

the network, and its self-consistent Fokker-Planck equation is numerically analyzed. In Ref.

[12], a layer network of leaky integrate-and-fire models is treated, and the formation of the

synfire-chain is analyzed by the Fokker-Planck equation.

In the present paper, a globally connected pulse neural network with excitatory and

inhibitory connections is analyzed using the Fokker-Planck equations. The neuron is modeled

by the active rotator, and the connection imitates the synaptic connection in the brain. By

virtue of the global connecting, a set of Fokker-Planck equations with nonlinear terms [13]

can be introduced, thus the probability density of the whole network can be treated directly.

In Sec. II, the definition of our model is given and its Fokker-Planck equations are
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introduced. In Sec. III, the Fokker-Planck equations are analyzed numerically, and the

bifurcation diagram is obtained. The periodic solutions and the chaotic solutions are found

in some parameter range. In Sec. IV, the chaotic solutions found in Sec. III are analyzed

with the Poincaré section and the largest Lyapunov exponent. In Sec. V, the pulse trains

of the model are analyzed using the interspike interval, the coefficients of variance, and the

correlation coefficients. Conclusions and discussions are presented in the final section.

II. MODEL

Let us consider the globally connected active rotators with excitatory elements θ
(i)
E (i =

1, 2, · · · , NE) and inhibitory elements θ
(i)
I (i = 1, 2, · · · , NI) written as

˙
θ

(i)
E = 1− a sin θ

(i)
E + ξ

(i)
E (t)

+
gEE

NE

NE∑
j=1

(− sin θ
(j)
E + 1/a)

−gEI

NI

NI∑
j=1

(− sin θ
(j)
I + 1/a), (1)

˙
θ

(i)
I = 1− a sin θ

(i)
I + ξ

(i)
I (t)

+
gIE

NE

NE∑
j=1

(− sin θ
(j)
E + 1/a)

−gII

NI

NI∑
j=1

(− sin θ
(j)
I + 1/a), (2)

〈ξ(i)
E (t)ξ

(j)
E (t′)〉 = Dδijδ(t − t′), (3)

〈ξ(i)
I (t)ξ

(j)
I (t′)〉 = Dδijδ(t − t′), (4)

〈ξ(i)
E (t)ξ

(j)
I (t′)〉 = 0, (5)

where a is a system parameter and ξ
(i)
E (t) and ξ

(i)
I (t) are Gaussian white noises with the

intensity D injected to the elements θ
(i)
E and θ

(i)
I , respectively. For a > 1, the active rotator

shows typical properties of an excitable system, namely, it has a stable equilibrium and

− sin(θ(i)(t))+ 1/a shows a pulse-like waveform with an appropriate amount of disturbance.

Although the active rotators are usually connected diffusively [14–17], the active rotators in

our model are connected with the term− sin(θ(i)(t))+1/a to imitate the synaptic connections

in the brain.
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Let us consider the normalized number densities of the rotators having the phase θE and

θI at time t written as

nE(θE , t) ≡ 1

NE

NE∑
i=1

δ(θ
(i)
E − θE), (6)

nI(θI , t) ≡ 1

NI

NI∑
i=1

δ(θ
(i)
I − θI), (7)

for the excitatory elements and inhibitory elements, respectively. With nE(θE , t) and

nI(θI , t), Eqs. (1) and (2) are rewritten as

˙
θ

(i)
E = 1− a sin θ

(i)
E + ξ

(i)
E (t)

+gEE

∫ 2π

0
dφE(− sinφE + 1/a)nE(φE , t)

−gEI

∫ 2π

0
dφI(− sinφI + 1/a)nI(φI , t), (8)

˙
θ

(i)
I = 1− a sin θ

(i)
I + ξ

(i)
I (t)

+gIE

∫ 2π

0
dφE(− sinφE + 1/a)nE(φE, t)

−gII

∫ 2π

0
dφI(− sinφI + 1/a)nI(φI , t). (9)

In the limit of NE , NI → ∞, nE(θE , t) and nI(θI , t) may be identified with the probability

densities, and in this approximation nE(θE , t) and nI(θI , t) follow the nonlinear coupled

Fokker-Planck equation [13] written as

∂nE

∂t
= − ∂

∂θE

(AEnE) +
D

2

∂2nE

∂θE
2 , (10)

∂nI

∂t
= − ∂

∂θI

(AInI) +
D

2

∂2nI

∂θI
2 , (11)

AE(θE , t) = 1− a sin θE

+gEE

∫ 2π

0
dφE(− sinφE + 1/a)nE(φE, t)

−gEI

∫ 2π

0
dφI(− sinφI + 1/a)nI(φI , t), (12)

AI(θI , t) = 1− a sin θI

+gIE

∫ 2π

0
dφE(− sinφE + 1/a)nE(φE , t)

−gII

∫ 2π

0
dφI(− sinφI + 1/a)nI(φI , t). (13)

In the limit of NE , NI → ∞, the dynamics of the elements can be followed by solving Eqs.

(8) and (9) together with the nonlinear Fokker-Planck Eqs. (10) and (11) for a desired
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number of elements, and we call it an infinite system. With the infinite system, we can

investigate the interspike interval and the coefficient of variance of each element, and the

correlation between two pulse trains from two elements in the system.

For simplicity, the strengths of connections are assumed to be gEE = gII ≡ gint and

gIE = gEI ≡ gext, and the parameters are fixed as a = 1.05 and gint = 1.0 in the following.

III. BIFURCATION ANALYSIS

Figures 1 (a), (b), and (c) show the numerical solutions of Eqs. (10) and (11) for (a)

D = 0.01 and gext = 0.2, (b) D = 0.02 and gext = 0.1, and (c) D = 0.03 and gext = 0.6

with the uniform initial condition nE = nI = 1/2π, and Figs. 1 (d), (e), and (f) show the

corresponding raster plots of the firing times of the finite system with NE = NI = 1000.

The elements in the finite system are aligned so that the indices of the excitatory elements

are in the range 0 ≤ i < 1000 and those of the inhibitory elements are in 1000 ≤ i < 2000.

Note that the firing time of the i-th element is defined as the time when − sin(θ(i)(t)) + 1/a

exceeds 1.5. For D = 0.01 and gext = 0.2 (Figs. 1 (a) and (d)), almost all the elements

fluctuate around their equilibria and sometimes emit spikes, and nE and nI converge to the

stationary densities. For D = 0.02 and gext = 0.1 (Figs. 1 (b) and (e)), the inhibitory

elements fire randomly with low firing rates, and the excitatory elements fire periodically.

The firings in each ensemble are asynchronous, thus the both densities converge to the

stationary densities. For D = 0.03 and gext = 0.6 (Figs. 1 (c) and (f)), almost all the

elements oscillate correlatively, and the densities also oscillate periodically. In the following,

such firings are called synchronous firings.

In Fig. 2, a bifurcation diagram in the (D, gext) plane is shown. The open circles show the

parameters where the numerically obtained nE and nI converge to the periodic solutions, and

the solid and dotted lines are the Hopf bifurcation line and the saddle-node bifurcation line,

respectively. Two saddle-node bifurcation lines intersect at a cusp bifurcation point, and a

saddle-node bifurcation line, a Hopf bifurcation line and a saddle separatrix loop bifurcation

line intersect at a Bogdanov-Takens bifurcation point [18, 19]. The Hopf and saddle-node

bifurcation lines are obtained as follows. First, Eqs. (10) and (11) are transformed into a

set of ordinary differential equations ẋ = f (x) for the spatial Fourier coefficients of nE and

nI . Next the stationary solution x0 which satisfies f (x0) = 0 is numerically obtained, and
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FIG. 1: The numerical solutions of the probability densities nE and nI for (a) D = 0.01 and

gext = 0.2, (b) D = 0.02 and gext = 0.1, and (c) D = 0.03 and gext = 0.6. Figures (d), (e), and (f)

are the corresponding raster plots of the firing times of the finite system with NE = NI = 1000.

The elements in the finite system are aligned so that the excitatory elements are in the range

0 ≤ i < 1000 and inhibitory elements are in 1000 ≤ i < 2000.

the eigenvalues of the Jacobian matrix Df (x0) are analyzed numerically.

In the region around (D, gext) 	 (0.03, 0.37), a periodic solution is created by a bifurca-

tion known as the double limit cycle bifurcation [19], namely, the simultaneous emergence

of stable and unstable limit cycles. The double limit cycle bifurcation line is obtained from

the long-time behavior of the solutions of Eqs.(10) and (11). Near the double limit cycle

bifurcation line, the bifurcations to chaos also exist, and we treat them in Sec. IV. Moreover,

when the double limit cycle bifurcation line approaches to the saddle-node bifurcation line,

the bifurcations become more complex, namely, it seems that the chaotic orbit suddenly

emerges when the system crosses the bifurcation line. The analysis of this bifurcation re-

quires infinitely long computational times and the large numerical precision, thus we could

not determine its mechanism.

To understand the bifurcation diagram in Fig. 2, let us define the probability fluxes [10]
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FIG. 2: A bifurcation diagram in the (D, gext) plane. The open circles show the parameters

where the numerically obtained nE and nI converge to the periodic solutions, and the solid and

dotted lines denote the Hopf bifurcation line and the saddle-node bifurcation line, respectively.

The dash-dotted lines denote the global bifurcations of the saddle separatrix loop bifurcation and

the double limit cycle bifurcation. The meanings of the abbreviations are as follows: C - cusp, BT

- Bogdanov-Takens, SSL - saddle separatrix loop, GH - generalized Hopf, and DLC - double limit

cycle.

for the excitatory and inhibitory ensembles as

JE(θE , t) = AEnE − D

2

∂nE

∂θE
, (14)

JI(θI , t) = AInI − D

2

∂nI

∂θI
, (15)

and the fluxes at θE = θI = 3/2π are observed in the following. Note that a stationary

solution and a periodic solution of nE and nI are projected as a stationary point and a limit

cycle onto the (JE, JI) plane, respectively.

In Fig. 3, a bifurcation diagram in the (D, gext) plane with schematic diagrams of the

solutions in the (JE , JI) plane is shown. Typically, there exist stationary points S0 with

(JE, JI) ∼ (0, 0) and S1 with JE > JI > 0, and a limit cycle emerges when S0 disappears

by the saddle-node on limit cycle bifurcation or when S1 loses its stability by the Hopf

bifurcation. Note that the stationary densities in Figs. 1 (a) and (b) correspond to S0 and

S1, respectively, and the temporally oscillating densities in Fig. 1 (c) correspond to the limit

cycle. A detailed schematic bifurcation diagrams are shown in Figs. 4 (a) and (b). Note
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FIG. 3: A bifurcation diagram in the (D, gext) plane with schematic diagrams of the solutions in

the (JE , JI) plane. The filled and open circles in the (JE , JI) plane denote the stable and unstable

equilibrium points, respectively, and the solid closed curve denotes the stable limit cycle.

that a saddle separatrix loop bifurcation line is added to Fig. 4 (b) as a conjecture although

we could not find it. From the trajectories shown in Fig. 4 (b), it is natural to assume

the existence of such a bifurcation. Moreover, as stated above, when the double limit cycle

bifurcation line in Fig. 4 (b) approaches to the saddle-node bifurcation line, the bifurcations

become more complex. This bifurcation is no longer a double limit cycle bifurcation, but

some bifurcation surely exists, thus we extend the double limit cycle bifurcation line with a

dashed line in Fig. 4 (b). Similarly, the saddle-separatrix loop bifurcation may also become

complex near the saddle-node bifurcation line, thus the SSL line is drawn with a dashed line

near the SN line in Fig. 4 (b).

As shown above, the globally connected active rotators with excitatory and inhibitory

connections show the oscillatory and synchronized behavior when the noise intensity D and

the strength gext of connection between the ensembles are appropriately chosen. Such a

oscillatory phenomenon is also observed in the system with two sigmoidal neurons one of

which is excitatory and the other is inhibitory [19]. By regarding the change of threshold of

the sigmoidal neuron as the change of the noise intensity D, and interpreting the output of

the sigmoidal neuron as the spatial firing rate of the neuronal ensemble, the network with

two sigmoidal neurons corresponds to our model. In other words, an oscillatory phenomenon

of two sigmoidal neurons is derived from a pulse neural network with infinite numbers of
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FIG. 4: A detailed schematic bifurcation diagrams around (a) the saddle separatrix loop and (b) the

double limit cycle bifurcation. The solid and dotted lines denote the Hopf bifurcation line and the

saddle-node bifurcation line, respectively. The dash-dotted lines denote the global bifurcations of

the saddle separatrix loop bifurcation and the double limit cycle bifurcation. The saddle separatrix

loop bifurcation line in Fig. (b) is added as a conjecture (see text for detail). The trajectories in

the (JE , JI) plane are also illustrated. The filled and open circles in the trajectories denote the

stable and unstable equilibrium points, respectively. And the solid and dashed closed curves denote

the stable and unstable limit cycle, respectively. The meanings of the abbreviations are as follows:

SN - saddle-node, H - Hopf, C - cusp, BT - Bogdanov-Takens, SSL - saddle separatrix loop, SNSL

- saddle-node separatrix loop, SNL - saddle-node on limit cycle, GH - generalized Hopf, DLC -

double limit cycle, and SH - subcritical Hopf.

excitatory and inhibitory neurons.

However, we are concerned with the importance of the pulses in the information process-

ing, thus we analyze the network with the interspike interval, the coefficient of variance, and

the correlation of the pulse trains in Sec. V.
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IV. CHAOS ANALYSIS

As stated in Sec. III, the bifurcations to chaos exist near the double limit cycle bifurcation

line. Let us consider the probability fluxes JE and JI at θE = θI = 3/2π. A time series of

JE for D = 0.017 and gext = 0.32 is shown in Fig. 5 (a), and it is observed that JE oscillates

aperiodically. The trajectory of this time series in the (JE , JI) plane is shown in Fig. 5 (b),

and it seems to form a chaotic attractor.
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FIG. 5: (a) A time series of JE and (b) its trajectory in the (JE , JI) plane for D = 0.017 and

gext = 0.32.

Let us consider the Poincaré section at the line JE = 0.3, and observe the points when

the trajectory crosses this line in the positive direction. The position of the attractor on the

Poincaré section against D for gext = 0.32 is shown in Fig. 6 (a). The range of D is chosen

to cover the range where the periodic solution is stable, namely, the range between the

saddle-node on limit cycle bifurcation at D 	 0.013 and the double limit cycle bifurcation
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at D 	 0.0185. The period-doubling bifurcation and the transition to chaos are observed.

Note that there exist periodic solutions whose periods are approximately multiples of the

original limit cycle when chaos does not exists. To confirm that the observed dynamics is
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FIG. 6: (a) A bifurcation diagram for gext = 0.32. The points at which the trajectory crosses

the line JE = 0.3 in the positive direction are plotted. (b) The corresponding largest Lyapunov

exponent.

actually chaotic, the largest Lyapunov exponent is calculated with a standard technique [20],

namely, by calculating the expansion rate of two nearby trajectories each of which follows

a set of ordinary differential equations ẋ = f (x) for the spatial Fourier coefficients of Eqs.

(10) and (11). In Fig. 6 (b), the corresponding largest Lyapunov exponent is shown. It

is observed that it takes positive values when chaotic solutions exist, and takes zero when

periodic solutions are stable.
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V. PULSE ANALYSIS

In the previous sections, the Fokker-Planck equations (10) and (11) are numerically an-

alyzed, and the dynamics of the excitatory and inhibitory ensembles is investigated. In this

section, the infinite system described by Eqs. (8), (9), (10), and (11) is treated because

the infinite system is useful for comparing our model with the experimental data of a single

neuron. In this section, only the parameters where the system has time-varying solutions

are treated.

First, let us define the interspike interval (ISI) as

Tk = tk+1 − tk, (16)

where tk is the k-th firing of the element. With Tk, the coefficient of variance of the pulse

train {tk}k is defined as

CV =

√
〈T 2

k 〉 − 〈Tk〉2
〈Tk〉 , (17)

where 〈·〉 denotes the average over k. CV takes large values for random pulse trains, and

takes zero for periodic pulse trains. The mean interspike interval T ≡ 〈Tk〉 and CV are used

to investigate the properties of a single pulse train. In the following, the mean interspike

intervals and the coefficients of variance of the excitatory and inhibitory elements are denoted

as TE , TI , CV E , and CV I , respectively.

Next, let us define the correlation coefficient C between two pulse trains [21]. Usually, the

correlation between two phase models is measured by the order parameter 〈cos(θi−θj)〉, but
it takes large values even when two rotators are fluctuating around their equilibria, thus it is

not appropriate to measure the correlation between two pulse trains. To define C, the time

under observation is divided into n bins of the width ∆, and the number of pulses in the i-th

bin is denoted as Xi and Yi for two pulse trains. Note that the width ∆ is sufficiently small

so that Xi and Yi take the value 0 or 1. Then X =
∑

Xi and Y =
∑

Yi are the numbers

of pulses, and Z =
∑

XiYi is the number of coincident pulses. The correlation coefficient C

between two pulse trains is defined as

C =
Z − (XY )/n√

X(1− X/n)Y (1− Y/n)
∈ [−1, 1]. (18)

Note that C takes the value 1 for the identical pulse trains and takes the value 0 in the large

n limit for two pulse trains without correlation. And C takes the value −1 when two pulse
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trains have a negative correlation, namely, Xi + Yi = 1 for i = 0, 1, 2, · · ·. In the following,

the value ∆ = 5 is used.

Let us consider two infinite systems, each of which is governed by (8), (9), (10), and (11)

with statistically independent noises. This system is composed of two excitatory and two

inhibitory elements, and each element is statistically identical with the one in the original

system with infinite numbers of elements. Thus the correlations between two elements in the

infinite system reflect the correlation among the elements in the original finite system. In

the following, the correlations between two excitatory elements and between two inhibitory

elements are denoted as CEE and CII , respectively.
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FIG. 7: The dependence of T on D for (a) gext = 0.32, (b) gext = 0.60, and (c) gext = 0.87, and

the dependences of CV and C on D for (d) gext = 0.32, (e) gext = 0.60, (f) gext = 0.87.

The dependences of TE, TI , CV E , CV I , CEE, and CII on the noise intensity D is shown

in Fig. 7 for three values of gext.

For gext = 0.32, with the increase of D, a periodic solution emerges by the saddle-node on

limit cycle (SNL) bifurcation, and it disappears by the double limit cycle (DLC) bifurcation

after a series of bifurcations to chaos. For values of D close to SNL, each element spends

a long time around its original equilibrium, thus T takes large values. And, reflecting the
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existence of chaos and periodic solutions with n-cycles, CV tends to take large values, but

the excitatory ensemble has high correlations.

For gext = 0.60, with the increase of D, a periodic solution emerges with SNL and

disappears by the Hopf bifurcation. For values of D close to SNL, both T and CV take

large values, and the ensemble of the excitatory elements has relatively high correlations.

For values of D close to the Hopf bifurcation, T , CV , and C take small values, thus all the

elements oscillate asynchronously with a high frequency.

For gext = 0.87, with the increase of D, a stable stationary point disappears by the

saddle-node bifurcation, then the system transits to the stable limit cycle (see Fig. 4 (a)),

and a limit cycle disappears by the Hopf bifurcation. For all values of D, T , CV , and C take

small values, thus all the elements oscillate asynchronously with a high frequency.

Note that the inhibitory elements tend to take larger T and CV , and smaller C than

the excitatory elements in all the cases. It is because the inhibitory elements have small

firing-rates and there exist the periods without firings as shown in Fig. 1 (f).

Following Brunel [11], let us classify the oscillations of excitatory elements based on three

properties, namely, the frequency (fast or slow), the degree of synchronization (synchronous

or asynchronous), and the randomness (regular or irregular). For example, the abbrevia-

tion FAR denotes the fast, asynchronous, and regular firings. With such a classification,

the comparison between our results and the experimental data may become easier. The

classification by Brunel is based only on the degree of synchronization and the randomness,

thus our FAR firings correspond to Brunel’s AR firings. Note that the bifurcation structure

of our model differs from Brunel’s one, and we consider only the parameters which yield

time-varying solutions, thus the same abbreviation does not necessarily imply the similar

firings. To compare the both firings, see Ref. [11].

A classification of the firings of excitatory elements in the (D, gext) plane is shown in Fig.

8. Typically, the FAR firing is observed near the Hopf bifurcation, and the SSI firing is

observed near SNL. For the parameters which yield chaos, the randomness of the system is

caused by both noise and chaos, and such firings are denoted as SSI∗. Typical time series

of JE obtained from the Fokker-Planck equation and the firing times of the elements in the

finite system for FAR, SSI, and SSI∗ firings are shown in Fig. 9. As stated above, SSI

and SSI∗ firings have large CV values because there are some noise-induced firings in the

periods between two synchronous firings. Moreover, as shown in Fig.9 (e), the intervals of
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and (c) show JE obtained from Fokker-Planck equation, and Figs. (d), (e), and (f) show the firing

times of the finite system with NE = NI = 1000.

synchronous firings in SSI firings are not constant because of the finite-size effect.

To analyze SSI∗ firings, the detection of chaos is required, but it is difficult because noise

hides chaos. In such a situation, the detection of the deterministic structure based on the

normalized prediction error (NPE) may be useful [22, 23].
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VI. CONCLUSIONS AND DISCUSSIONS

The globally connected active rotators with excitatory and inhibitory connections under

noise are analyzed using the nonlinear Fokker-Planck equation, and their oscillatory phe-

nomena are investigated numerically. Typically, the FAR (fast, asynchronous, and regular)

oscillations are observed near the Hopf bifurcation line, and the SSI (slow, synchronous,

and irregular) oscillations are observed near the saddle-node on limit cycle bifurcation line.

Moreover, the SSI∗ oscillations where chaos and noise coexist are also observed.

In the cortex, the spike trains with high CV , namely, the highly random spike trains are

often observed experimentally, and their roles in information processing in the brain are

discussed [1–4]. Our results show that the spike trains with high CV do not necessarily

imply that the network oscillates asynchronously, but there is a case where the elements in

the network have some degree of correlations. Particularly, the SSI∗ oscillations have high

CV and high correlations (Figs. 7 (a) and (d)).

On the other hand, in the visual cortex and the hippocampus, various kinds of syn-

chronous oscillations are observed, and their relations to the integration of the visual infor-

mations and the learning process of the memory are discussed [5]. Though the mechanism of

the generations of such oscillations has not been fully understood, many researchers empha-

size the importance of the inhibitory neurons based on both experimental and theoretical

studies [24–27]. Especially, the experimental data in Ref. [27] implies that the network

with excitatory and inhibitory neurons contributes to the 40-Hz oscillatory activity in the

hippocampal CA3 area of rats and such a network might relate to our model.
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