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Abstract

An associative memory in a pulsed neural network composed of the FitzHugh-Nagumo models

storing sparse patterns with hierarchical correlations is investigated. The memory patterns com-

posed of 0/1 digits are represented by the synchronous periodic firings of the neurons. It is found

that the target pattern and the OR pattern are retrieved individually by controlling the intensity

of fluctuations in the system.

Physical Review E 64 (2001) 031904.

PACS numbers: PACS numbers: 87.10.+e, 05.45.−a, 84.35.+i, 07.05.Mh

1



I. INTRODUCTION

The associative memory in neural networks has been investigated for more than twenty

years. In the autocorrelative associative memory model, the bit patterns are stored in

the connection coefficients of the network and the stored patterns are retrieved using the

neural dynamics. The storage capacity of the network is analyzed extensively by numerous

researchers and it is known that the storage capacity for sparse patterns diverges as the

firing rate of the pattern approaches 0. The coding of the memory is called “sparse” when

the number of excited neurons is much smaller than that of quiescent ones, in other words,

the firing rate of the network is small. The existence of sparsely encoded associative memory

in the brain is discussed in physiological experiments [1].

On the other hand, it is known that the mixed states of the stored patterns, which are

nonlinear superpositions of stored patterns, also become equilibria of the network [2, 3]. The

typical mixed states are the OR patterns, the AND patterns, and the majority decision mixed

states [2]. In a broad sense, such mixed states are the models of the mutually correlated

memories which are experimentally observed [4]. In Ref. [3], the dynamics of the network

storing memory patterns with hierarchical correlations is analyzed and the mixed states

of stored patterns are considered. Such mixed states may be interpreted as unnecessary

patterns which accompany with stored patterns, but some researchers relate the stabilization

of mixed states of stored patterns with a “concept formation” [5] and discuss the validity of

this relation in the physiological experiments [2, 6].

Conventionally, the carrier of the information in associative memory models is thought

to be the firing rate of a single neuron or an ensemble of neurons. However, neural networks

composed of spiking neurons also show the properties of associative memory [7–11], and have

attracted considerable attentions in recent years. In those systems, the following models are

often used as spiking neurons: the Hodgkin-Huxley model, which describes the dynamics of

squid giant axons; the FitzHugh-Nagumo model, which is the reduced model of the Hodgkin-

Huxley model; and the leaky integrate-and-fire model, which has an internal state governed

by a linear differential equation and a spiking mechanism with a threshold. The couplings

among those neurons are accompanied with time delays which model the time lag from

the presynaptic neuron to the postsynaptic neuron, and the memory is represented in the

spatio-temporal firing pattern of the neurons.
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Meanwhile, the physiological environment where neurons operate is thought to have sev-

eral sources of randomness, such as, thermal noise, stochastic properties of synapses [12, 13],

and the sum of enormous presynaptic inputs [14], thus the effect of the fluctuation may not

be neglected. Generally, stochastic resonance (SR) is a well-known phenomenon where a

weak input signal is enhanced by its background fluctuation and observed in many non-

linear systems [15–18]. The theoretical works on SR in a single neuron are performed on

the integrate-and-fire model [19], the leaky integrate-and-fire model [20, 21], the FitzHugh-

Nagumo model [22–24], and the Hodgkin-Huxley model [25]. In those works, it is observed

that the output signal-to-noise ratio (SNR) [23, 25] or the peak height of the interspike in-

terval distribution [19–22] takes a maximum as a function of the fluctuation intensity. Some

physiological experiments reinforce the hypothesis that the neural system utilizes SR to de-

tect weak signals [26–29]. In Ref. [26], Douglass et al. investigated sinusoidally stimulated

mechanoreceptor cells of a crayfish with additive fluctuations and observed the existence of

the optimal fluctuation intensity which maximizes the output SNR. In Ref. [27], Pei et al.

observed SR in caudal photoreceptor interneurons of a crayfish by intrinsic and not external

fluctuations. Recently, theoretical works on SR in spatially extended systems are performed

and the roles of fluctuations in neural systems are discussed [30, 31]. In Ref. [10], associa-

tive memory in a pulsed neural network with fluctuations is considered, and the memory

retrieval is induced by the suitable amount of fluctuations. This phenomenon might relate

to stochastic resonance.

In the present paper, we treat the sparsely encoded associative memory in a network

of the FitzHugh-Nagumo models and consider the effect of fluctuations in the system. In

Sec. II, a coupled FitzHugh-Nagumo model and some quantities are defined. In Sec. III,

the stored six patterns with hierarchical correlations are defined. In Sec. IV, the results of

numerical simulations are presented. It is shown that the target pattern and the OR pattern

which is one of the mixed patterns are retrieved individually by controlling the fluctuation

intensity. In Sec. V, theoretical analyses are presented. Conclusions and discussions are

given in the final section.
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II. ASSOCIATIVE MEMORY OF SPIKING NEURONS

In the following, as a model of associative memory, we treat a coupled FitzHugh-Nagumo

(FN) model written as

τ
dui

dt
= −vi + ui − u

3
i

3
+ Si(t) + ηi(t) +

N∑
j=1

Jij

∑
k∈κ(i,j)

α(t− tkj − dp), (1)

dvi
dt

= ui − βvi + γ, (2)

α(t) = gpeak
t

t0
exp

(
1− t

t0

)
, (3)

〈ηi(t)ηj(t
′)〉 = Dδijδ(t− t′), (4)

κ(i, j) ≡ {k|tfi (t)− dp < t
k
j < t− dp}, (5)

where β = 0.8, γ = 0.7, τ = 0.1, ui is the fast variable which denotes the membrane potential

of the neuron, vi is the slow variable which represents the refractoriness, Si(t) is the external

input, ηi(t) is a Gaussian white noise, t
k
j is the k-th firing time of the j-th neuron, the firing

time is defined as the time when ui(t) exceeds an arbitrary threshold θ, t
f
i (t) is the latest

firing time of the i-th neuron at time t, dp is the uniform time delay, and α(t) is the alpha

function with the height gpeak. The alpha function [32] models the excitatory postsynaptic

potential (EPSP) [33] which has a positive influence on the postsynaptic membrane potential

caused by the arrival of the presynaptic signal. The FN model is a general reduced model of

the Hodgkin-Huxley equation, which is a qualitative model of the squid giant axon and often

used to describe the behaviors of a single neuron. Note that our FN model with the above

parameters shows a typical characteristic of a neuron, namely, it has a stable rest state,

and with an appropriate amount of disturbance it generates a pulse with a characteristic

magnitude of height and width. The time series of u1(t) for Si(t) = 0, Jij = 0 and D = 0.002

is shown in Fig. 1. It is observed that two spikes are generated with the help of fluctuations.

In the following, the parameters are fixed at dp = 3, gpeak = 0.5, t0 = 1, and θ = 0. The

validity of these synaptic parameters is discussed later.

The memory patterns stored in the network are defined as follows. First, pattern vectors

ξµ = (ξµ
1 , ξ

µ
2 , · · · , ξµ

N) (µ = 1, 2, · · · , p) are randomly generated according to the probability
density

P (ξµ
i ) = (1− a)δ(ξµ

i ) + aδ(ξ
µ
i − 1), (6)

where δ(x) denotes the delta function and a (0 ≤ a ≤ 1) is the average of ξµ
i . The dynamics
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FIG. 1: A typical time series of u1(t) for Si(t) = 0, Jij = 0, and D = 0.002. Two spikes are

observed.

of a network storing the patterns with a = 0.5 is investigated in Ref. [10]. In the following,

sparse patterns with a = 0.1 are treated.

Next, by applying the bit transformations to ξµ
i , p1 groups of patterns composed of p2

patterns with overlap b are obtained. Note that the relationship p = p1p2 holds and the

overlap between the patterns ξ and ζ is defined as

m(ξ, ζ) ≡ 1

Na(1− a)
N∑

i=1

(ξi − a)(ζi − a). (7)

Let us denote the j-th pattern in the i-th group as ζ (i,j). The overlap between two pat-

terns which belong to different groups takes zero, namely, the patterns have hierarchical

correlations [3] characterized by

m(ζ (i,j), ζ (k,l)) = (b+ (1− b)δjl)δik, (8)

(1 ≤ i, k ≤ p1, 1 ≤ j, l ≤ p2).

Following Yoshioka and Shiino [9], to make the network store the above p patterns ζ (k,l)

(1 ≤ k ≤ p1, 1 ≤ l ≤ p2), the connection coefficients Jij are defined as

Jij =
1

Na(1− a)
p1∑

k=1

p2∑
l=1

ζ
(k,l)
i (ζ

(k,l)
j − a). (9)

Note that the matrix Jij ∝ ∑
ζ

(k,l)
i (ζ

(k,l)
j − a) is used instead of the usual Jij ∝ ∑

(ζ
(k,l)
i −

a)(ζ
(k,l)
j −a) so as not to give negative inputs to the neurons which store 0’s, because the FN

model can fire even with the negative input due to the rebound effect [34]. It is also noted
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that Eqs. (1) and (9) indicate that the coupling from the j-th neuron to the i-th neuron

with ζ
(k,l)
i = ζ

(k,l)
j = 1 has the strength ∼ gpeak/Na. The FN model with our parameters

generates a spike when a single EPSP with height ∼ 0.1 is injected (data not shown), thus
0.1Na/gpeak synchronized EPSPs are required to make the postsynaptic neuron to generate

a spike. Thus, for large N , it is concluded that the effect of a single presynaptic neuron is

weak, which is consistent with the recent physiological observations [14].

The OR pattern vector ζOR(k) = (ζ
OR(k)
1 , ζ

OR(k)
2 , · · · , ζOR(k)

N ) of the k-th group is defined

as

ζ
OR(k)
i = U

( p2∑
l=1

ζ
(k,l)
i

)
, (10)

U(x) =



1 if x > 0

0 otherwise
. (11)

Generally, the mixed states of stored patterns in the k-th group is defined as

ζ
mix(k)
i = U

( p2∑
l=1

ζ
(k,l)
i −Θ

)
, (12)

where Θ is an arbitrary threshold [2]. Note that p2 mixed states are defined by changing

Θ, and for Θ = 0 the OR patterns are obtained. It is known that the mixed states of the

stored patterns are also memorized in the network [2, 3]. The storage capacity of the OR

patterns diverges in the sparse limit a→ 0, and the storage capacities of other mixed states

converge to 0 in the limit a → 0. Thus the OR patterns are “typical” mixed states in the

sparse limit. In the following we consider only the OR patterns as the mixes states of stored

patterns.

The external input Si(t) is defined as

Si(t) = xiU0U(t) (xi ∈ {0, 1}), (13)

=



xiU0 if t ≥ 0
0 otherwise

, (14)

where xi is the binary factor which determines whether the input is injected to the i-th

neuron or not. In the following, U0 is fixed at U0 = 0.1, which is so small that each neuron

cannot fire without the fluctuation ηi(t). Using the binary vector x = (x1, x2, · · · , xN ) of

the input, the input overlap m
(k,l)
in , which measures the correlation between the pattern
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ζ (k,l) = (ζ
(k,l)
1 , ζ

(k,l)
2 , · · · , ζ (k,l)

N ) and the external input S(t) = (S1(t), S2(t), · · · , SN(t)), is

defined as

m
(k,l)
in = m(ζ (k,l), x). (15)

To measure the correlation between the pattern ζ (k,l) and the time series ui(t) (i =

1, 2, · · · , N), ui(t) is transformed into the binary series yi(t) ∈ {0, 1} written as

yi(t) =



1 if t < tfi (t) + ∆d

0 otherwise
, (16)

where the parameter ∆d is set close to the characteristic width of the output pulse, and

∆d = 4 is used in the following. Then the overlap between the state of the network and the

pattern ζ is defined as

mout =
1

Nf(1− f)
N∑

i=1

(yi − f)(ζi − f), (17)

f =
1

N

N∑
i=1

ζi. (18)

In the following sections, we demonstrate that the target pattern ζ (1,1) and the OR pattern

ζOR(1) of the first group can be retrieved individually by controlling the fluctuation intensity

D.

III. DEFINITION OF SIX PATTERN VECTORS

In the following, only the case with a = 0.1, p1 = 2, and p2 = 3 is considered for

simplicity. The larger the number of neurons becomes, the more groups or patterns can be

stored, and similar results shall be obtained, but we must perform the numerical experiments

with relatively small N , p1, and p2 mainly because of the limited computational power.

A schematic diagram of six patterns ζ (k,l) (k = 1, 2, l = 1, 2, 3) is shown in Fig. 2. In this

section, we define these six pattern vectors. First, let us denote the set of indices of neurons

which store 1’s in the pattern ζ (k,l) by

G(k, l) = {i|ζ (k,l)
i = 1, 1 ≤ i ≤ N}. (19)

The sets G(1, l) in the space of neuron indices are shown in Fig. 3. Note that the number
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FIG. 2: A schematic diagram of six pattern vectors.

G(1,1)

G(1,2) G(1,3)

FIG. 3: The sets G(1, l) in the space of neuron indices.

of elements of the set G(k, l) is

|G(k, l)| =
N∑

i=1

ζ
(k,l)
i = Na. (20)

Because the overlap between the patterns ζ (k,l1) and ζ (k,l2) (l1 �= l2) is b, the number of

elements of the intersection of G(k, l1) and G(k, l2) is calculated to be

|G(k, l1) ∩G(k, l2)| =
N∑

i=1

ζ
(k,l1)
i ζ

(k,l2)
i , (21)

= Na(a + b− ab) (l1 �= l2). (22)

Though the number of elements of the set G(k, 1) ∩ G(k, 2) ∩ G(k, 3) is not determined by
the parameters a and b, we assume that the probability that the element of G(k, 1)∩G(k, 2)
belongs to G(k, 1) ∩ G(k, 2) ∩ G(k, 3) is identical with the probability that the element of
G(k, 1) belongs to G(k, 3). Under such an assumption, the number of elements of the set

G(k, 1) ∩G(k, 2) ∩G(k, 3) is calculated to be

|G(k, 1) ∩G(k, 2) ∩G(k, 3)| = Na(a + b− ab)2. (23)

8



Thus the number of elements of the set G(1, 1)∪G(1, 2)∪G(1, 3) is Na[3− 3(a+ b− ab) +
(a+ b− ab)2], and we denote it as Nall in the following.

Without loss of generality, the pattern ζ (1,1) can be defined as

ζ
(1,1)
i =



1 1 ≤ i ≤ Na = 24
0 otherwise

, (24)

and ζ (1,2) and ζ (1,3) are defined so that the OR pattern ζOR(1) of the first group satisfies

ζ
OR(1)
i =



1 1 ≤ i ≤ Nall = 62

0 otherwise
. (25)

The patterns ζ (2,l) (l = 1, 2, 3) are determined randomly so that they satisfy Eq. (8).
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FIG. 4: The result of numerical simulation, (a) the firing times of all the neurons and (b) the

overlaps m(1,1) and mOR(1) for N = 240, b = 0.07, and D = 0.001. The retrieval of the pattern

ζ(1,1) is successful.

9



IV. FLUCTUATION-INDUCED PATTERN SELECTION

Under the above configurations, numerical simulations are performed for N = 240, a =

0.1, b = 0.07, and m
(1,1)
in = 0.6. At the time t = 0, the variables ui and vi are set around the

equilibrium, namely, ui � −1.2 and vi � −0.63.
The firing times of all the neurons for the fluctuation intensity D = 0.001 are shown in

Fig. 4(a). It is observed that the neurons which store 1’s in the pattern ζ (1,1) start to fire

periodically at t � 50. Let us denote the overlap between the state of the network and the
pattern ζ (1,1) as m(1,1), and the overlap between the state of the network and the OR pattern

ζOR(1) of the first group as mOR(1). The time series of overlaps m(1,1) and mOR(1) are shown

in Fig. 4(b). The overlap m(1,1) almost reaches 1 at t � 50, thus the retrieval of pattern

ζ (1,1) is successful.
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FIG. 5: The result of numerical simulation, (a) the firing times of all the neurons and (b) the

overlaps m(1,1) and mOR(1) for N = 240, b = 0.07, and D = 0.0017. The retrieval of the OR

pattern ζOR(1) is successful.
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The result of the numerical simulation for D = 0.017 is shown in Fig. 5. At small t, the

pattern ζ (1,1) is retrieved, but at t � 80, it is observed that mOR(1) exceeds m(1,1), thus in

this case the OR pattern ζOR(1) is successfully retrieved.

From the above results, it can be concluded that the target pattern is retrieved for the

small fluctuation intensity, and the OR pattern is retrieved for the moderate fluctuation

intensity.
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m(1,1)

mOR(1)

m

D

FIG. 6: The asymptotic values of the overlaps m(1,1) and mOR(1) as a function of the fluctuation

intensity D for N = 240 and b = 0.07. Each overlap is numerically obtained by averaging the value

over 150 ≤ t ≤ 200.

In Fig. 6, the asymptotic values of overlaps m(1,1) and mOR(1) are plotted against the

fluctuation intensity D. It is observed that the overlapm(1,1) takes a maximum atD � 0.001.
This phenomenon is similar to so-called stochastic resonance, where a weak input signal is

enhanced by its background fluctuations. It is also observed that the overlap mOR(1) takes

a maximum at D � 0.0017. Thus it can be concluded that the target pattern and the

OR pattern can be retrieved individually by controlling the fluctuation intensity. In other

words, a pattern selection is induced by the fluctuations in the system. While the fluctuation-

induced pattern retrieval has already been reported in Ref. [10], the present result indicates

that the fluctuation can play more functional roles such as pattern selection.

If the fluctuations are realized by thermal noise, it shall be difficult to control their

intensities in the biological environment. On the other hand, it is known that the sum of

enormous random EPSPs can behave like fluctuations in the postsynaptic neuron [14, 35].

If the sum of EPSPs from the other subnetwork in the brain behaves like fluctuations in the
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associative network, it might be natural and realizable to control their intensities. It is also

known that such a fluctuation-like input can induce SR in a single neuron model [36–41].

To realize the fluctuation-induced pattern selection, the overlap b between the patterns

in the identical group is also important. The asymptotic values of the overlaps as a function

of the fluctuation intensity D for b = 0 and 0.1 are shown in Figs. 7 and 8, respectively.

For b = 0, it is observed that only the target pattern ζ (1,1) is successfully retrieved and
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FIG. 7: The asymptotic values of the overlaps m(1,1) and mOR(1) as a function of the fluctuation

intensity D for N = 240 and b = 0. Each overlap is numerically obtained by averaging its value

over 150 ≤ t ≤ 200. Only the target pattern is successfully retrieved.
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FIG. 8: The asymptotic values of the overlaps m(1,1) and mOR(1) as a function of the fluctuation

intensity D for N = 210 and b = 0.1. Each overlap is numerically obtained by averaging its value

over 150 ≤ t ≤ 200. Only the OR pattern is successfully retrieved.

the retrieval of ζOR(1) fails. For b = 0.1, it is observed that only the OR pattern ζOR(1) is
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successfully retrieved and the retrieval of ζ (1,1) fails. Thus it is concluded that the overlap b

between the patterns in the identical group is important to retrieve both the target pattern

and the OR pattern. In biological systems, such a regulation of b might be realized during

the learning process of patterns [4].

As shown in Figs. 4 and 5, there is a characteristic time required for the retrieval of

patterns. Let us define the periods to retrieve the patterns ζ (1,1) and ζOR(1) as T (1,1) and

TOR(1), respectively. The dependences of T (1,1) and TOR(1) on the fluctuation intensity D

for b = 0.07 are shown in Fig. 9. It is observed that T (1,1) and TOR(1) diverge at D = 0.0009

0

100

200

300

400

500

0.001 0.00125 0.0015 0.00175 0.002

T

D

T (1,1)

T OR(1)

FIG. 9: The dependences of T (1,1) and TOR(1) on the fluctuation intensity D for b = 0.07. The data

are obtained by taking the mean values of 100 ∼ 200 samples. The number of samples depends on

the fluctuation intensity D.

and 0.0013, respectively. It is because the retrieval of patterns is realized by the saddle-node

bifurcation with the parameter D. This dynamics is treated in the next section.

V. THEORETICAL ANALYSIS OF FLUCTUATION-INDUCED PATTERN SE-

LECTION

In this section, we give a qualitative explanation for the fluctuation-induced pattern

selection. In the following, the system with p1 = 1 and p2 = 3, namely, a network which

stores three patterns ζ (1,l) (l = 1, 2, 3) with overlap b is considered for simplicity. The

external input is injected only to the neurons in the set G(1, 1), namely, x = ζ (1,1). In the

following, we treat only the dynamics of the neurons in the set G(1, 1) ∪ G(1, 2) ∪ G(1, 3)
for simplicity.
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FIG. 10: The definition of the two variables zn and σn. The width of the time interval is set at a

value around the time delay of the network, namely, the period of the periodic firing.

As shown in Fig. 10, two variables zn and σn are defined as the number of the firing

neurons and the standard deviation of the firing times in the narrow time interval, respec-

tively. The width of the time interval is set at a value around the time delay of the network,

namely, the period of the periodic firing. In the following, the discrete-time dynamics of

(σn, zn) (n = 0, 1, 2 · · ·) is considered. This analysis is similar to the theoretical analysis of
the propagation of synchronized spikes in the feedforward synfire chain [42]. The numerical

simulations are performed for Na = 100, p1 = 1, and p2 = 3.

The numerically obtained flows in the (σ, z) plane for D = 0.0005 are shown in Fig. 11(a).

Note that the number zn of the firing neurons is normalized by the number of the neurons

which store 1’s in the pattern ζ (1,1), namely, Na. Three attractors in the (σ, z) plane are

observed. One is (0,0), and the rests are the attractors corresponding to ζ (1,1) and ζOR(1).

The reason why the attractor denoting ζOR(1) is not a single node but a line z � 2.6 is given
later. When the number of the initially firing neurons is sufficiently small, namely, z0 � 0,
it is observed that (σn, zn) converges to (0,0). In other words, the memory retrieval fails

for z0 � 0 with D = 0.0005 because almost all the neurons cannot fire with this fluctuation
intensity. Note that the system cannot cross the dotted curve about zn � 0.2 shown in

Fig. 11(a), which shows the boundary of the basins for the attractors (0,0) and ζ (1,1). This

boundary seems to be the stable manifold of a saddle at about (σ, z) = (0.4, 0.2) shown in

Fig. 11(b).

The numerically obtained flows in the (σ, z) plane for D = 0.0012 are shown in Fig.
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FIG. 11: The flows in the (σ, z) plane for D = 0.0005. (a) The numerically obtained flows and (b)

the schematic flows deduced from (a).

12(a). The attractor at about (0,0) disappears because of a saddle-node bifurcation, thus

the system initially put at (0,0) converges to the attractor at about (0.15,1), which denotes

the pattern ζ (1,1).

The numerically obtained flows in the (σ, z) plane forD = 0.002 are shown in Fig. 13. The

attractor which denotes the pattern ζ (1,1) disappears because of a saddle-node bifurcation

again, thus the system initially put at (0,0) converges to the line at z � 2.6 which denotes
the pattern ζOR(1).

As previously noted, the pattern ζOR(1) cannot denoted by a single node in the (σ, z)

plane, because all the neurons which store 1’s in ζOR(1) cannot synchronize each other as

shown in Fig. 14. The step inputs are injected to the neurons which store 1’s in the pattern

ζ (1,1), thus they fire slightly earlier than the other neurons.
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FIG. 12: The flows in the (σ, z) plane for D = 0.0012. (a) The numerically obtained flows and (b)

the schematic flows deduced from (a).

VI. CONCLUSIONS AND DISCUSSIONS

The associative memory in a pulsed neural network storing sparse patterns with hierar-

chical correlations is investigated. The stored memory patterns composed of 0/1 digits are

represented by the synchronous periodic firings in the network. It is found that the retrieval

of the target pattern is achieved by adding fluctuations to the system. This phenomenon

is similar to so-called stochastic resonance, where a weak input signal is enhanced by its

background fluctuations. Though there is no time-dependent input in our network, the

mechanism of associative memory is driven and enhanced by fluctuations. Besides the tar-

get pattern, the OR pattern which is the nonlinear superposition of the three patterns which

belong to the identical group is also retrieved with the help of fluctuations and its optimal

fluctuation intensity is larger than that of the target pattern. Thus the target pattern and
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FIG. 14: The firing times of all the neurons in the system for N = 240, b = 0.07, and D = 0.0017.

It is observed that the neurons in the range from 1 to 24 fire slightly earlier than the other neurons.

the OR pattern are retrieved individually by controlling the fluctuation intensity, in other

words, a fluctuation-induced pattern selection takes place. The theoretical analysis of the

above results is also presented, and it is found that the fluctuation-induced pattern selec-

tion is realized by the successive saddle-node bifurcations parameterized by the fluctuation

intensity.

The OR pattern may be interpreted as unnecessary patterns which accompany with stored

patterns, but some researchers relate the stabilization of mixed states of stored patterns

with a “concept formation” [5], and discuss the validity of this relation in the physiological

experiments [2, 6]. If the OR pattern is meaningful in the information processing, the above

results suggest that the fluctuations in the system might play significant roles in the brain.

There are several sources of randomness in the physiological environment where neurons
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operate, such as, thermal noise, stochastic properties of synapses [12, 13], and the sum of

enormous presynaptic inputs [14]. It is difficult to control the intensity of thermal noise, but,

if the stochasticity of synapses or the sum of enormous presynaptic inputs act as fluctuations,

it might be natural to control their intensities by the synaptic potentiation and depression.

It is known that stochastic resonance also takes place by fluctuation-like presynaptic inputs

[36–41].

Recently, a psychological experiment revealed that a moderate magnitude of acoustic

noise minimizes the response time to retrieve memories [43]. Though our results are based

on numerical simulations, this experiment may relate to the fluctuation-induced memory

retrieval and suggests that fluctuations may play a significant role in the real brain.
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