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Abstract

Concerning the fluctuation which is observed in biological sensory systems and cortical
neuronal networks, the roles of fluctuations in pulsed neural networks are investigated.
As a model of a single neuron, the FitzHugh-Nagumo model is used, and two kinds
of couplings of neurons are considered, namely, the electrical coupling which is often
observed in sensory systems, and the chemical coupling which is widely seen in cortical
neuronal networks.

The network with electrical couplings with the periodic input shows typical properties
of stochastic resonance, which is the phenomenon where a weak input signal is enhanced
by its background fluctuations. It is found that the optimal fluctuation intensity which
maximizes the correlation coefficient between the input and the output increases with the
increase of the coupling strength of the network. Using these properties, the network in
which the fluctuations in the system play significant roles in the information processing
is proposed. The dependence of the correlation coefficient on the coupling strength of
the network is also investigated, and it is found that the correlation coefficient takes a
maximum also as a function of the coupling strength. This phenomenon called array-
enhanced stochastic resonance is analyzed theoretically.

In the network with chemical couplings, the associative memory in the network is
considered, and it is found that the memory retrieval is induced by the fluctuations in the
system. Besides, for the network storing sparse patterns with hierarchical correlations, it
is observed that the retrieved pattern is selected by controlling the fluctuation intensity.

Based on the results for both couplings, it is claimed that the fluctuations in the
pulsed neural network might have beneficial effects on the information processing in the
neural system.
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Chapter 1

Sources of Fluctuations in Neural
Systems

1.1 Introduction

In this paper, the roles of fluctuations in the pulsed neural network are investigated.
There are several sources of fluctuations in neural systems and we review them in this
chapter. The regulation of the intensity of the fluctuations is an important concept in
our research, thus we take notice of it in this chapter.

In Sec. 1.2, the fluctuations in the receptor cells in sensory systems are introduced.
The receptor cells receive signals from the outer world, thus they are exposed to the
fluctuations of the environment. In Sec. 1.3, the stochasticity of the ion channels is
introduced. The ion channels are ubiquitous in the membranes of neurons, thus this
fluctuation is thought to be universal in neural systems. In Sec. 1.4, the synaptic
unreliability is introduced. In the central nervous system such as the hippocampus and
the cortex, the synaptic transmission is less reliable than that of the peripheral nervous
system such as the neuromuscler junction. In Sec. 1.5, the fluctuation of the sum of
the presynaptic inputs is introduced. This fluctuation causes the cortical neurons to fire
randomly. In Sec. 1.6, the chaotic behavior in the neural system is briefly reviewed. The
summary of this chapter is presented in the final section.

1.2 Fluctuations in the Outer World

As shown in Fig. 1.1, the living organism receives the information from the outer world
with the receptor cells in sensory systems, such as the photoreceptor cells in the retina
and the hair cells in the ear [1]. Thus it is considered that the responses of the receptor
cells reflect the fluctuations in the outer world, for example, fluctuations of the number
of photons injected to the retina for photoreceptor cells, and the acoustic fluctuations
for hair cells. The hair cells also work as the detectors of the hydrodynamic or aerial
displacements in the outer world for some living organisms, for example, the fish [1], the
crayfish [2, 3], the cricket [4], and the cockroach [5], and it is known that they play an
important role in the predator avoidance behavior. Thus it is thought that the signals
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central nervous system

input

Figure 1.1 The o ws of the information in living organisms.

which inform the approach of the predator are always exposed to the hydrodynamic or
aerial fluctuations. The signal detection in such a noisy environment is of importance
and has attracted considerable attention in recent years. We treat this problem in Part
II.

1.3 Stochasticity of Ion Channels

The excitable membranes of the neurons can evoke the action potentials in response to
the depolarizing input. The generation of the action potential is realized by the ionic and
capacitive currents across the membrane. The main components of the ionic currents are
sodium, potassium, and calcium, and those ions flow across the ion-selective and voltage-
dependent channels in the membrane. Hodgkin and Huxley investigated the properties of
the squid giant axon and showed that the transmembrane potential V obeys the equation

C
dV
dt

= � [gN a(V � EN a) + gK (V � EK ) + gL (V � EL )]; (1.1)

where C = 1 [� F/cm2] is the transmembrane capacitance, EN a = 55 [mV], EK = � 72
[mV], and EL = � 50 [mV] are the reversal potentials for the sodium, the potassium,
and the leak respectively, gN a = ¯gN am3h and gK = ḡK n4 are the voltage-dependent
conductances with

dm
dt

= � m(1 � m) � � mm; (1.2)

dh
dt

= � h(1 � h) � � hh; (1.3)

4



dn
dt

= � n(1 � n) � � nn; (1.4)

where all � ’s and � ’s are functions of V , and ¯gN a, ḡK and gL are constants [6]. Note
that m, h, and n are continuous variables in the range from 0 to 1 and they determine
the state of the sodium and potassium channels. Equations (1.1), (1.2), (1.3), and (1.4)
compose a system of the deterministic differential equations, thus the behavior of the
membrane potential V is also deterministic. However, the physiological experiments
with the patch-clamp technique [7] revealed that each ion channel randomly fluctuates
between the discrete states [7, 8, 9], namely, the “open” and “close” states, because of the
thermal fluctuations, thus the modeling as stochastic processes might be more suitable.

In Ref. [10], the kinetics of the sodium and potassium channels are modeled by
Markov processes with eight and six discrete states respectively, and the behavior of the
membrane potential V written by eq. (1.1) with the conductances governed by the above
Markov processes is investigated. Some stochastic behaviors of the membrane potential,
for example, the fluctuation around the resting potential, and the occasional failures of
the firing, are observed.

This stochasticity caused by the randomness of ion channels is thought to be universal
in the neural system.

1.4 Synaptic Unreliability

In this section, we introduce the unreliability of the synapses which transfer the informa-
tion from the pre-synaptic neurons to the post-synaptic neurons or other organs such as
muscle fibers. With the terminology defined in Chap. 2, only the chemical synapses are
treated in this section. As shown in Fig. 1.2, the arrival of the action potential at the
pre-synaptic terminal causes the release of the chemical transmitters, for example, acetyl-
choline (ACh) or glutamate at excitatory synapses and  -aminobutyric acid (GABA) at
inhibitory synapses. It is known that the transmitters are released in multimolecular
packets called as quanta [12] which contain thousands of molecules. The chemical trans-
mitters diffuse across the synaptic cleft, and combine with the receptor molecules in the
post-synaptic membrane. Then the channels open, the ionic current flows across the
post-synaptic membrane, and the post-synaptic potential (PSP) is produced [11].

In the above process, it is known that the release of the chemical transmitters can
be modeled by a stochastic process [13, 14, 15]. Let us denote the number of the release
sites of the chemical transmitters as N . The probability of the release of transmitters
depends on its environment such as the density of the calcium ion and the pre-synaptic
potential. Let us consider the release of the transmitter induced by an action potential
which arrives at the synaptic terminal, and assume the release probability pr for each
release site is uniform. If each site releases the quantum of transmitters independently,
the number m of the release sites which release quanta follows the binomial distribution

P(m) = N Cm pr
m (1 � pr )

N � m : (1.5)

The mean hmi and the standard deviation SD(m) of m are directly calculated as

hmi = N pr ; (1.6)
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Figure 1.2 A schematic diagram of the synapseand the release
of the chemical transmitters.

SD(m) =
q

N pr (1 � pr ): (1.7)

If a single quantum of the transmitter produces a PSP with amplitude Vq at the post-
synaptic organ, the amplitude VP SP of the PSP evoked by a pre-synaptic action potential
has the mean hVP SP i and the standard deviation SD(VP SP ) written as

hVP SP i = Vphmi = VpN pr ; (1.8)

SD(VP SP ) = VpSD(m) = Vp

q
N pr (1 � pr ): (1.9)

Note that eq. (1.9) determines the degree of the unreliability of the single synapse.
Historically, the stochasticity of the synapses at the neuromuscular junctions has been

often investigated because they are relatively reliable, and it is known that they have
large hmi in the range from 100 to 300 and large pr under the normal condition [11]. On
the other hand, the synapses in the central nervous system such as the cortex and the
hippocampus are less reliable and have small hmi in the range of 1 to 20 [11, 16, 17], and
the recent careful physiological experiments suggest that the release probability in the
cultured hippocampal neurons ranges from 0.09 to 0.54 [16]. As a result, the amplitude
of EPSP largely fluctuates from trial to trial [18, 19,20], for example, hVP SP i = 1:67 [mV]
and SD(VP SP )=0.271 [mV] for the synapses between the pairs of pyramidal neurons in
slices of rat sensorimotor cortex [18], and hVP SP i = 0:607 [mV] and SD(VP SP )=0.37
[mV] for the synapses between the pyramidal and non-pyramidal neurons in slices of rat
sensorimotor cortex [19].

In Ref. [21], the capacity of the information transfer by neurons with unreliable
synapses is investigated theoretically.
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Note that the degree of the unreliability eq.(1.9) can be regulated by controlling the
release probability pr , and such a regulation might be realized by the synaptic potentia-
tion and depression [16, 17, 22].

1.5 Sum of Synaptic Inputs

1.5.1 De�nition of the Co e�cien t of Variance Cv

In this section, we introduce the fluctuations of the sum of the synaptic inputs observed
in the cortical neurons [27] and the motoneurons [23]. First, let us define the coefficient
of variance Cv , which is often used to measure the degree of randomness of a spike train
of cortex neurons. Spike trains of cortex neurons are thought to be highly variable, like

0 100 200 300 400 500

TnTn-1 Tn+1

t

V

Figure 1.3 A spike train of a FitzHugh-Nagumo model neuron
and its ISI sequencef Ti g.

a time series in Fig. 1.3, which is generated by a FitzHugh-Nagumo (FN) neuron model
with additive Gaussian white noise. The definition of the FN model is given in Sec.
1.5.5.

Let us denote the time of the i -th firing as t i . Then the interspike interval (ISI) T i is
defined as

Ti = t i � t i � 1: (1.10)

As shown in Fig. 1.3, Ti shall be a random variable. The histogram of the interspike
interval sequence f Ti g derived from the spike train in Fig. 1.3 is shown in Fig. 1.4. The
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Figure 1.4 The histogram of the interspike interval sequence
f Ti g derived from the time seriesin Fig. 1.3. The value in vertical
axis is normalized by the number n = 1000of samples.

mean value � and the variance � 2 are defined as

� =
1

n

nX

i =1

Ti ; (1.11)

� 2 =
1

n

nX

i =1

(Ti � � )2; (1.12)

where n is the number of samples. With � and � , the coefficient of variance Cv is defined
as

Cv = � =�: (1.13)

To see the typical value of Cv, let us consider the case in which firings of a neuron
take place according to the Poisson distribution. In such a case, the ISI T of the neuron
follows the exponential distribution

P(T) = � exp(� �T ); (1.14)

where � is the firing rate of the neuron. From eq. (1.14), the mean value � and the
variance � 2 of T are easily calculated as � = 1=� and � 2 = 1=� 2, so the coefficient of
variance Cv takes the value 1 in this case.

Generally, Cv takes a large value around 1 for random spike trains, and it takes a
small value around 0 for ordered spike trains, for example, periodic one. For the spike
train treated in Fig. 1.4, � ' 53:6, � ' 50:6, and Cv ' 0:94 are derived, so it can be
concluded that it is a highly random spike train.
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1.5.2 Large Cv Values in Cortex Neurons

It is known that the coefficient of variance Cv of ISIs of cortex neurons takes large values
for behaving animals. For example, in Ref. [26], the spiking variability of neurons in
the association cortex of the cat is investigated and it is reported that Cv takes a value
about 1.2 when the cat is quietly awaking, and it takes a value about 1.5 during REM
sleep. And in Ref. [27], the large Cv value over 1 is observed in the primary visual cortex
of the awake, behaving macaque monkey.

It is thought that this variability of spikings of cortex neurons is due to the sum of
enormous inputs from presynaptic neurons [31]. It is known that about 104 synapses
connect to a postsynaptic neuron in the cortex. When all the presynaptic neurons are
firing with the frequency 1� 10 [Hz], their sum can behave like noise in the postsynaptic
neuron.

This subjects have a lot to do with the dispute between Softky and Shadlen & New-
some [27, 28, 29, 30], so we treat it in the next subsection in detail.

1.5.3 Dispute Bet ween Softky and Shadlen & Newsome

From 1993 to 1995, Softky and Shadlen & Newsome have disputed about the models
which describe the large Cv values in cortex neurons on their papers [27, 28, 29, 30].
Before explaining their issues, let us introduce one of the simplest neuron models, the
leaky integrate-and-fire (LIF) model written as

�
dV
dt

= � (V � V0) + Vin (t); (1.15)

if V > � ; V = V0 (reset); (1.16)

where V is the membrane potential of the neuron, � is the time constant of the membrane,
V0 is the resting potential, Vin (t) is the external input, and � > V0 is the threshold. Note
that this model emits a spike when V exceeds the threshold � , and resets to the resting
potential V0 immediately. The model without the first term of the righthand side of eq.
(1.15) is called as the integrate-and-fire neuron model. In the cortex, it is observed that
� = 1 � 10 [ms], V0 ' � 60 [mV], and � ' � 55 [mV] [28]. In Fig. 1.5, the behavior of
a single LIF neuron for V0 = � 60 [mV], � = 5 [ms], and � = � 55 [mV] is shown. The
input Vin (t) is a step function with height 6.5 [mV] for t > 1 [ms].

Let us consider the case in which the input Vin (t) to the neuron is the sum of the
synaptic inputs from the presynaptic neurons. The positive influence of a presynaptic
input to the potential of the postsynaptic neuron is called as the excitatory postsynaptic
potential (EPSP), and the negative one is called as the inhibitory postsynaptic potential
(IPSP). As a waveform K (t) of EPSP and IPSP, the following functions are often used:
the alpha function

� (t) =

8
><

>:

t
� 0

exp
�

1 �
t
� 0

�

if t > 0

0 otherwise
; (1.17)
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V
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-50

-40

-30

0 10 20 30

[mV]
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q

Figure 1.5 The behavior of a single LIF neuron for V0 = � 60
[mV], τ = 5 [ms], and θ = � 55 [mV]. The input V in (t) is a step
function with height 6.5 [mV] for t > 1 [ms]. When the membrane
potential V exceedsthe threshold θ, a spike is emitted and V resets
to the resting potential V0.

shown in Fig. 1.6; and the exponential function

e(t) =

8
><

>:

exp
�

�
t
� 0

�

if t > 0

0 otherwise
: (1.18)

Note that � 0 is the time constant of the synapse and it can differ for different synapses,
but we consider only the case in which � 0 is uniform for all the synapses for simplicity
in the following. With K (t), the input Vin (t) is written as

Vin (t) =
mX

i =1

1X

k=1

wi K (t � t i
k); (1.19)

where m is the number of synapses, t i
k is the time of k-th firing of the i -th synapse, and

wi is the synaptic weight which takes positive values for excitatory synapses and takes
negative values for inhibitory synapses.

When the i -th presynaptic neuron is firing according to the Poisson distribution with
frequency � i [Hz], eq. (1.19) can be regarded as shot noise [33]and its mean � in , variance
� 2

in and correlation function Cin (t) are written as

� in =
mX

i =1

� i wi

Z 1

0
K (t)dt; (1.20)
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Figure 1.6 The α function α(t) for τ0 = 1.

� 2
in =

mX

i =1

� i w2
i

Z 1

0
K (t)2dt; (1.21)

Cin (t) � h(Vin (0) � hVin i )(Vin (t) � hVin i )i ; (1.22)

=
mX

i =1

� i w2
i

Z 1

0
K (t0)K (t0+ t)dt0: (1.23)

Note that the input Vin (t) to the cortex neuron is regarded as noise with mean � in ,
variance � 2

in and correlation function Cin (t) given by eqs. (1.20), (1.21) and (1.23).
Equations (1.20), (1.21) and (1.23) give

� in = � 0e
mX

i =1

� i wi ; (1.24)

� 2
in =

� 0e2

4

mX

i =1

� i w2
i ; (1.25)

Cin (t) = � 2
in

�

1 +
t
� 0

�

exp
�

�
t
� 0

�

; (1.26)

for the alpha function � (t), and

� in = � 0

mX

i =1

� i wi ; (1.27)

� 2
in =

� 0

2

mX

i =1

� i w2
i ; (1.28)

Cin (t) = � 2
in exp

�

�
t
� 0

�

; (1.29)
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for the exponential function e(t). Note that Vin (t) characterized by eqs. (1.27), (1.28),
and (1.29) can be modeled by the Ornstein-Uhlenbeck process written as

d
dt

Vin (t) = �
1

� 0
(Vin (t) � � in ) +

s
2� 2

in

� 0
� (t); (1.30)

h� (t)� (t0)i = � (t � t0); (1.31)

where � (t) is Gaussian white noise [34].
With the above preliminaries, let us introduce the dispute between Softky and Shadlen

& Newsome.
In Ref. [27], to reproduce the large Cv values in cortex neurons, Softky & Koch

considered the statistics of the spikings of a LIF neuron to which enormous EPSPs are
injected, namely, eqs. (1.15), (1.16), and (1.19) for w i > 0. This model shows various Cv

values dependent on the time constant � , but in the physiologically plausible range, only
the small Cv value are observed. So they concluded that cortex neurons do not work as
integrators unlike the usual LIF model, and claimed that they work as coincidence detec-
tors [31, 32] which detect the coincident firings of some presynaptic neurons. To realize
the coincidence detector by the LIF model, a very short time constant � is required,
but such a short time constant has not been found in physiological experiments. As
candidates to realize the coincidence detector, they proposed some mechanisms, such as,
the effective reduction of the time constant by the sum of enormous presynaptic inputs
[35], and the active dendrite [36, 37, 38] in which pulses can generate and propagate.

On the other hand, in Ref. [28], Shadlen & Newsome claimed that the small C v

value of Softky’s model is due to the fact that they treat only EPSPs. They constructed
a neuron model to which almost the same amount of EPSPs and IPSPs are injected,
and demonstrated that such balanced EPSPs and IPSPs, or the balanced-inhibition, can
yield large Cv values even in a simple LIF neuron.

In Fig. 1.7, the typical behaviors of their models are shown. The data are generated
by eq. (1.15) for � = 5 [ms], V0 = � 60 [mV], and � = � 55 [mV], and the input Vin (t)
is described by the Ornstein-Uhlenbeck process (1.30). The behavior of the model by
Softky & Koch, to which the sum of only EPSPs is injected, is shown in Fig. 1.7(a). The
parameters are m = 5000, � i = 0:5 [Hz], � 0 = 1 [ms], and wi = 0:5. As described above,
the coefficient of variance Cv of this model takes a small value 0.52. In Fig. 1.7(b), the
behavior of the model by Shadlen & Newsome, to which the sum of balanced EPSPs
and IPSPs is injected, is shown. The parameters are � i = 10 [Hz], � 0 = 1 [ms], wi = 0:5
for 5000 excitatory synapses, and wi = � 0:5 for 5000 inhibitory synapses. The large Cv

value over 1 is observed under the balanced-inhibition.
Softky approved the idea of the balanced-inhibition and argued that the time con-

stant of the membrane effectively decreases under the balanced-inhibition, and cortex
neurons work as coincidence detectors [29]. Based on this argument, he proposed that the
information in the cortex is carried by the timings of the firing of each neuron, in other
words, the cortex neurons transmit the information using the temporal coding scheme.

Against Softky’s proposition, Shadlen & Newsome claimed that the LIF neuron works
as a integrator which integrates the noise-like presynaptic inputs and its dynamics is
governed by the Brownian motion, so its output cannot reflect the timing of the input
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Figure 1.7 The typical behaviors of model neuronsto reproduce
the large Cv valuesin the cortex. The input is (a) the sum of only
EPSPs and (b) the sum of balancedEPSPs and IPSPs.

pulses [30]. He proposed that the information in the cortex is carried by the firing rate
of each neuron.

As mentioned above, the dispute between Softky and Shadlen & Newsome is relevant
to the problem of the functional mode of the neuron, namely, the coincidence detector
or the integrator, and the problem of the information coding, that is, the temporal
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coding or the firing rate coding. Their claims are based on theoretical studies, but the
experimental evidences are required to determine which standpoint is valid in the cortex
neurons.

As for the functional mode of the neuron, the idea of the coincidence detector is of
theoretical interest, but it is uncertain whether it is realizable under the physiological
conditions. Similarly, though it is accepted that the large Cv values are realized by
the balanced-inhibition, there is no physiological evidence that EPSPs and IPSPs are
precisely balanced. Thus this question is still an open problem.

The problem of the carrier of the information in cortex neurons is also still contro-
versial. However, there is a view that the temporal coding is realizable without the
coincidence detector. This idea is introduced in Sec. 1.5.5.

1.5.4 Dev elopmen t After the Dispute

In this subsection, we introduce the related issues to the dispute between Softky and
Shadlen & Newsome.

In Ref. [39], Shinomoto et al. showed that the Ornstein-Uhlenbeck process, namely,
the LIF model with Gaussian white noise, cannot reproduce the physiological data, and
in the next paper [40], they found that the LIF model with colored noise, namely, eqs.
(1.15) and (1.30), can reproduce the data. In Ref. [41], it is observed that the burst
firings can generate large Cv values than that of neurons under the balanced-inhibition.

In Refs. [42, 43], the dynamics of the network of neuron models under the balanced-
inhibition is investigated.

In Ref. [44], it is reported that the Cv values derived from spike trains of the neuron
in the visual cortex of the monkey remarkably decrease if the data are carefully chosen
when the eyes of the monkey are at a standstill. This experimental result disapproves
the “common sense” that the Cv values in cortex neurons are very large for behaving
animals.

Thus further researches are required both experimentally and theoretically to under-
stand the role of cortex neurons.

1.5.5 Reliabilit y of Spik e Timings

In the dispute with Softky, Shadlen & Newsome claimed that cortex neurons integrate
the noise-like presynaptic input and their spikes seem to be random. If one follows
their arguments, it is concluded that the timing of firings of neurons cannot carry the
information, so the idea of the temporal coding is rejected. But recent theoretical and
experimental studies show that the timing of firings of neurons might be essential even
in the conventional neuron models. It is known as the problem of the reliability of spike
timings. In this subsection, we introduce this problem.

As a neuron model, let us consider the FitzHugh-Nagumo (FN) equation written as

�
du
dt

= � v + u �
u3

3
+ Vin (t) + � (t); (1.32)
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dv
dt

= u � � v +  ; (1.33)

h� (t)� (t0)i = D� (t � t0); (1.34)

where � ,  , and � are parameters, u is the fast variable which denotes the internal state
of the neuron, v is the slow variable which represents the refractory period, Vin (t) is the
input to the neuron, and � (t) is Gaussian white noise with intensity D which models
thermal noise. Note that all the variables and constants are dimensionless in the above
equations. The parameters are set at � = 0:8,  = 0:7, and � = 0:1 in the following. As
the input Vin (t), a static input

Vin (t) = U(t � t0); (1.35)

�

(
U0 if t � t0

0 otherwise
; (1.36)

or a fluctuating input governed by eq. (1.30) is used.
In Fig. 1.8(a), the firing times of an FN model with a static input are plotted for

U0 = 0:35 and D = 0:0001. The firing times fluctuate from trial to trial because of
thermal noise � (t).

In Fig. 1.8(b), the firing times of an FN model with a fluctuating input, and the
waveform of the input are plotted for D = 0:0001, � 0 = 5, and � 2 = 0:2. Note that the
particular input waveform is injected repeatedly, but � (t) is injected independently for
each trial. Despite thermal noise � (t), the spike timings of the FN neuron are reliable
for each trial.

Regarding the fluctuating input Vin (t) as the sum of presynaptic inputs, the above
result shows that this neuron model can respond to the input from presynaptic neurons
reliably despite thermal noise.

The similar results are observed both theoretically [48, ?] and experimentally, for
example, in motion detecting neurons in vivo of the fly [45], and in retinal ganglion
neurons in vivo of the tiger salamander and the rabbit [46], in neocortical slices of the
rat [47, ?], and in slices of the visual cortex of the ferret [49].

This high reliability of neurons might be an important mechanism to realize the
temporal coding.

1.6 Chaos

In this section, chaos, namely, the deterministic but complex behaviors in nonlinear
systems, is introduced as an example of the random behaviors in neural systems.

Experimentally, chaos in neural systems is firstly observed in the periodically stim-
ulated neurons, for example, the Onchidium giant neuron [51] and the squid giant axon
[52]. The similar phenomena can be numerically reproduced in the periodically stimu-
lated Hodgkin-Huxley equation [53]. A chaotic behavior of the periodically stimulated
Hodgkin-Huxley equation is shown in Fig. 1.9. It is observed that the response of the
model to a periodic pulse current with period 5.5 [ms], width 0.5 [ms], and height 19
[� A/cm2] is chaotic.
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Figure 1.8 The �ring times of an FN model with (a) a static
input and (b) a uctuating input. The waveform of the input
Vin (t) is also shown below each graph.

After these observations, it is found that the self-sustained firings of the Onchidium
pacemaker neuron without periodic inputs also show chaotic behaviors [54], and it is
suggested that the intracellular slow oscillation of the membrane is concerned with the
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Figure 1.9 A chaotic behavior of the periodically stimulated
Hodgkin-Huxley equation. (a) A periodic pulse current with pe-
riod 5.5 [ms], width 0.5 [ms], and height 19 [µA/cm 2] injected to
the model. (b) The behavior of the membrane potential V of the
Hodgkin-Huxley model.

self-sustained chaos. In Ref. [55], the neuron model incorporating the membrane conduc-
tances and the intracellular calcium dynamics is numerically analyzed and the chaotic
behaviors are also observed.

As for the high-dimensional chaos, the electroencephalographic (EEG) waves in the
olfactory bulb of the rabbit show the chaotic behaviors [56], and the relationship between
this phenomenon and the memory in the brain is discussed [57, 58]. Theoretically, the
associative memory in chaotic neural networks is investigated by several authors [59, 60,
61].

In this paper, we consider the roles of the sub-threshold fluctuations in the membrane
potential of the neuron. On the other hand, as previously shown, chaos in the single
neuron is observed only in its pulse train, particularly in its interspike interval, and the
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sub-threshold chaos has not been found experimentally at least in our knowledge. Thus
it is not clear whether chaos can be a candidate for the fluctuations treated in this paper.

1.7 Summary

The several sources of fluctuations introduced in this chapter are summarized in Table
1.1. Note that it is impossible to control the fluctuation intensity for the fluctuations in

sensory system central nervous system regulation of intensity

outer world  � �
ion channel   �
synapse 4  
synaptic input �  
chaos ?  ?

Table1.1 The sourcesof uctuations in neural systemsand their
possibilities for the regulation of the uctuation intensity.

the outer world and the stochasticity of ion channels, and it is possible for the synaptic
unreliability and the sum of synaptic input by the synaptic potentiation and depression.

The regulation of the fluctuation intensity is an important concept in our research,
and, in Chap. 5, we will find that the array-enhanced stochastic resonance gives a mech-
anism for an effective regulation of the fluctuation intensity even for the “uncontrollable”
fluctuations.
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Chapter 2

Mo deling the Net work of Spiking
Neurons

2.1 Model of Spiking Neurons

In this chapter, we introduce the general model of the network of spiking neurons. De-
pending on its mathematical expression, the couplings of the network are classified into
two groups, namely, the electrical coupling and the chemical coupling.

Let us consider a single spiking neuron model governed by a d-dimensional differential
equation written as

dx

dt
= F (x) + S(t) + η(t); (2.1)

x 2 R d; (2.2)

where x = (V; x2; � � � ; xd)
t is a d-dimensional vector which denotes the internal state of

the neuron, V is the membrane potential of this neuron, F (x) is the function which de-
scribes the dynamics of the neuron, S(t) = (S1(t); S2(t); � � � ; Sd(t))t is the external input,
and η(t) = (� 1(t); � 2(t); � � � ; � d(t))t denotes background fluctuations in the network. The
FitzHugh-Nagumo model is a model for d = 2 and written as

�
du
dt

= � v + u �
u3

3
+ S(t) + � (t); (2.3)

dv
dt

= u � � v +  ; (2.4)

where � ,  , and � are parameters, S(t) is the external input, � (t) is the background
fluctuation, u is the variable which models the membrane potential of the neuron, and
v is the variable which represents the refractoriness after the firing of the neuron. Note
that eqs. (2.3) and (2.4) are rewritten as eq. (2.1) with x = (u; v) t , S(t) = (S(t)=� ; 0)t ,
and η(t) = (� (t)=� ; 0)t . A single FN model shows a characteristic of an excitable system,
namely, it has a stable rest state, and with an appropriate amount of disturbance it
generates a pulse with a characteristic magnitude of height and width. The time series of
u(t) for � = 0:8,  = 0:7, � = 0:1, and S(t) = 0 with Gaussian white noise characterized
by eq. (1.34) for D = 0:002 is shown in Fig. 2.1.
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Figure 2.1 A time seriesof a FN model for β = 0.8, γ = 0.7,
τ = 0.1, and S(t) = 0 with Gaussianwhite noisecharacterizedby
eq. (1.34) for D = 0.002.

Besides the FN model, the leaky integrate-and-fire neuron model (d = 1) written as
eq. (1.15), and the Hodgkin-Huxley neuron model [6] (d = 4) are often used by several
authors. In the following, we mainly use the FN neuron model.

2.2 Modeling the Network of Spiking Neurons

Let us consider a network of spiking neurons written as

dx(i )

dt
= F (i )(x(i )) + G(i )(x(1) ; x(2) ; � � � ; x(N )); (2.5)

i = 1; 2; : : : ; N;

where x(i ) 2 R d is a vector which denotes the internal state of the i -th neuron, and G(i )

is the coupling term. The external input and the background fluctuation are omitted for
simplicity.

Generally, the connection of neurons is thought to be the sum of the interactions of
two neurons. Thus eq. (2.5) can be rewritten as

dx(i )

dt
= F (i )(x(i )) +

NX

j =1

G(ij )(x(i ) ; x(j )); (2.6)

i = 1; 2; : : : ; N;
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where G(ij ) is the coupling term between the i -th neuron and the j -th neuron.
Depending on the mathematical expression of G(ij ), the couplings of the network are

classified into two groups, namely, the electrical coupling and the chemical coupling.

2.3 Electrical Coupling

The coupling term of the electrical coupling is written as

G(ij )(x(i ) ; x(j )) = W (ij )(x(j ) � x(i )); (2.7)

where W (ij ) is a diagonal matrix with diagonal components W (ij )
1 ; W (ij )

2 ; � � � ; W (ij )
d . This

type of coupling is also called as the diffusive coupling and often used to model the
high-dimensional dynamical system.

Physiologically, the electrical coupling is realized by the so-called electrical synapse,
at which the electrical current is transfered directly to the postsynaptic neuron through
the gap junction [11].

The electrical synapse is analogous to the electric circuit. Let us consider a circuit
composed of resistances and capacitances shown in Fig. 2.2. From Kirchhoff’s current

Rc Rc

R C

Vn-1 Vn Vn+1

In-1 In In+1

Jn Jn+1

Figure 2.2 An electric circuit model.

law and voltage law, the following relationships hold.

I n =
Vn

R
+ C

dVn

dt
; (2.8)
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I n = Jn � Jn+1 ; (2.9)

Jn =
1

Rc
(Vn� 1 � Vn); (2.10)

Jn+1 =
1

Rc
(Vn � Vn+1 ): (2.11)

Substituting eqs. (2.9), (2.10), and (2.11) for (2.8), a differential equation

dVn

dt
= �

1

RC
Vn +

1

RcC

X

j = n� 1;n+1

(Vj � Vn); (2.12)

is derived. This equation denotes the dynamics of a chain of the electrically coupled leaky
integrate-and-fire neurons without the spiking mechanism (1.16). Thus the electrical
coupling can be understood as the coupling mediated by the resistance (or conductance).

The network with electrical couplings has the following properties [11]:

� Most electrical synapses do not exhibit rectification, but conduct in both directions;

� Even subthreshold fluctuations are transfered to the postsynaptic neuron;

� There is no characteristic delay unlike the chemical synapse;

� The velocity of the information transfer is very fast. Thus it is often observed in
the system related to the escape from danger, for example, nerve fibers in the nerve
cord of the crayfish, and motoneurons in the spinal cord of the frog;

� The electrical coupling can synchronize the elements in the network. The electrical
fish utilizes this property to generate electricity.

2.4 Chemical Coupling

The coupling term of the chemical coupling is written as

G(ij )(x(i ) ; x(j )) = W (ij )
X

k:tk
j <t

K (ij )(t � tk
j � � (ij )); (2.13)

where tk
j is the k-th firing time of the j -th neuron, � (ij ) is the sum of the delay from

the j -th neuron to the i -th neuron, and K (ij )(t) is the waveform of the post synaptic
potential (PSP) from the j -th neuron to the i -th neuron.

Note that the information from the presynaptic neuron is transfered to the postsynap-
tic neuron only when the presynaptic neuron emit a spike, and its transfer is accompanied
with a particular delay � (ij ).

In Fig. 2.3, a schematic diagram of the delay in the network with the chemical
coupling is shown. At the time t = t k

j , a pulse is emitted from the j -th neuron, and
it arrives at a synapse after the transmission delay, which is the time for a pulse to
propagate on the axon. The conduction velocity of a pulse is known to be about 1 � 10
[m/s] [62, 63], thus, if the length of the axon is 100 [� m], the transmission delay is about

22



v=1~10 [m/s]
d=10~100 [ms]

(100 [mm]) 

j

i

t=tj
k

K   (t)(ij) synaptic delay

d=1~2 [ms]

t=tj
k+d(ij)

transmission delay

transmission delay

Figure 2.3 A schematic diagram of the delay in the network with
chemical coupling.

10 � 100 [� s]. Then the chemical transmitters are released from the synapse to the
dendrite of the postsynaptic neuron, and, as a result, an EPSP (or IPSP) is generated
at the dendrite. This process takes about 1 � 2 [ms] and this delay is called as the
synaptic delay [11]. The EPSP arrives at the soma of the postsynaptic neuron after the
sub-millisecond transmission delay. Thus the delay � (ij ) is the sum of the transmission
delays and the synaptic delay, and, as seen above, the synaptic delay is dominant in � (ij ).

The properties of the chemical coupling are as follows:

� There is a particular synaptic delay;

� The information is not transfered without the presynaptic pulse;

� It is observed in the wide area of the brain.
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Chapter 3

Organization of This Thesis

3.1 Purpose

This thesis is devoted to the understanding of the roles of fluctuations in pulsed neural
networks. As shown in Chap. 1, the environment where the biological neurons operate
has several sources of fluctuations, thus their effects cannot be neglected in analyzing
the behavior of the biological neuronal networks.

Recently, it is reported that the fluctuations in some nonlinear systems bring the bene-
ficial effects to the system, for example, the noise-induced order [65] and the noise-induced
entrainment of oscillators [66]. Particularly, stochastic resonance (SR) is a phenomenon
where the input to the system is enhanced by its background fluctuations [67, 68, 69, 70].
It is proposed that the biological sensory neuron utilizes SR to detect the weak signals
for escaping from enemies, and some physiological experiments reinforce this hypothesis.
If the fluctuations are beneficial to a single sensory neuron, they might work effectively
also in coupled sensory systems and in cortical neural networks.

We investigate the dynamics of the networks of spiking neurons where the fluctuations
work effectively, and discuss its possibility in the neural system. The two groups of the
networks are considered, namely, the network with electrical couplings and the network
with chemical couplings. The former is the model of sensory systems, and the latter
is the model of cortical neural networks. The roles of fluctuations in the system are
discussed in each case.

3.2 Organization of This Thesis

In Part II, the network with electrical couplings is treated.

In Chap. 4, the network composed of the electrically coupled FitzHugh-Nagumo
neurons without delays is analyzed. The periodic input pulse train and Gaussian white
noise which models the fluctuations in the system are added to the system. The system
shows the typical property of stochastic resonance, namely, the existence of the optimal
fluctuation intensity which maximizes the correlation between the input and the output,
and it is observed that the optimal fluctuation intensity increases with the increase of
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the coupling strength. Using this property, we construct a network which processes the
input signal by controlling the fluctuation intensity.

In Chap. 5, the system treated in Chap. 4 is analyzed again. It is observed that the
correlation coefficient takes a maximum as a function of not only the fluctuation inten-
sity but also the coupling strength. This phenomenon called array-enhanced stochastic
resonance is theoretically analyzed in this chapter.

In Chap. 6, the network composed of the electrically coupled FitzHugh-Nagumo
neurons with a delay is treated, and the results similar to the previous chapters are
observed.

In Part III, the network with chemical couplings is treated.
In Chap. 7, the associative memory in the network of chemically coupled FitzHugh-

Nagumo neurons is treated, and it is found that the memory retrieval is realized by adding
the fluctuations to the system. This fluctuation-induced memory retrieval is analyzed
with a one-dimensional map. Moreover, it is also found that the alternate retrieval of
two patterns is realized in our network.

In Chap. 8, the associative memory in the network storing sparse patterns with
hierarchical correlations is treated. It is observed that the target pattern and the OR
pattern are retrieved individually by controlling the fluctuation intensity.

Conclusions and discussions are given in the final chapter in Part IV.
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Chapter 4

Sto chastic Resonance in the
Net work without Dela ys

4.1 Introduction

In noisy nonlinear systems, stochastic resonance (SR) is a well-known phenomenon where
a weak periodic signal is enhanced by its background fluctuations and observed in many
nonlinear systems, such as bistable ring lasers, semiconductor devices, chemical reactions,
and neural systems (for reviews, see Refs. [67, 68, 69, 70]). When a periodic signal and
fluctuations are injected to such systems simultaneously, the signal to noise ratio (SNR)
of the output signal is maximized at an optimal fluctuation intensity.

As shown in Chap. 1, the neural system has several sources of fluctuations, thus
SR may play a significant role. The theoretical works on SR in a single neuron are
performed on the integrate-and-fire model [71], the leaky integrate-and-fire model [72, 73],
the FitzHugh-Nagumo model [74, 75, 76], and the Hodgkin-Huxley model [77, 92]. In those
works, it is observed that the output SNR [75, 77, 92] or the peak height of the interspike
interval distribution [71, 72, 73, 74] takes a maximum as a function of the fluctuation
intensity. Some physiological experiments reinforce the hypothesis that the neural system
utilizes SR to detect weak signals [78, 79, 80, 81, 82]. In Ref. [78], sinusoidally stimulated
mechanoreceptor cells of a crayfish with additive fluctuations show the property of SR,
namely, the existence of the optimal fluctuation intensity which maximizes the output
SNR. In Ref. [79], SR is observed in caudal photoreceptor interneurons of a crayfish by
intrinsic and not external fluctuations.

SR in spatially extended systems is also investigated and some new features are
demonstrated [88, 89, 90, 91, 92]. In Ref. [89], the dependence of the normalized power
norm, which measures the correlation between the aperiodic input and the output of
the system, on the fluctuation intensity by increasing the number of neuron models
composing the system is investigated. In Ref. [92], the dependence of SR on the input
frequency in a coupled system is suggested to be important for the neural information
processing.

In this chapter, based on Ref. [93], we shall consider SR in the single FitzHugh-
Nagumo model and in an electrically coupled FitzHugh-Nagumo model. The background
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fluctuations are modeled by Gaussian white noise and added to the system. For a
single neuron, the dependence of SR on the input frequency is considered, and the
eigenfrequency of the neuron is defined. For a coupled system, we shall consider a network
with a superimposed periodic pulse train, namely, a sum of three periodic pulse trains
with mutually irrational frequencies and show the system can separate three periodic
pulse trains by controlling the fluctuation intensity.

4.2 SR in the single FN Model

As a model of a neuron, we use the FitzHugh-Nagumo model written as

�
du
dt

= � v + u �
u3

3
+ S(f ; t) + � (t); (4.1)

dv
dt

= u � � v +  ; (4.2)

S(f ; t) =

(
S0 if n=f � t � n=f + h (n = 0; 1; 2; � � �)
0 otherwise

; (4.3)

h� (t)� (t0)i = D� (t � t0); (4.4)

where S(f ; t) is a periodic pulse train with height S0, width h, and frequency f , and � (t)

t

u
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Figure 4.1 A time seriesof u for S0 = 0.1, f = 0.5 and D =
0.003.

is Gaussian white noise with intensity D which models the fluctuations in the system.
In the following, parameter values � = 0:8,  = 0:7, � = 0:1, and h = 0:3 are mainly
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used, and the pulse height S0 is set small so that the system does not generate a pulse
without a certain amount of fluctuations, namely, the input pulse is sub-threshold.

To numerically integrate the stochastic differential equations (4.1) and (4.2), we use
the following procedure. Applying the fourth-order Runge-Kutta algorithm [103] to the
deterministic part of the equation, namely, eqs. (4.1) and (4.2) with � (t) = 0, the data
u(t) and v(t) at the time t are evolved into u r k(t + ∆t) and vr k(t + ∆t), respectively,
where ∆t is the time step of the numerical integration and the value ∆t = 0:01 is
mainly used in the following. To incorporate the effect of � (t),

p
D∆t G(0; 1) is added

to ur k(t + ∆t), where G(0; 1) is a random number following Gaussian distribution with
the mean 0 and the variance 1. The value D∆t of the variance is determined from the
following calculation.

* Z � t

0
� (t) dt

! 2+

=
Z � t

0

Z � t

0
dtdt0h� (t)� (t0)i ; (4.5)

=
Z � t

0

Z � t

0
dtdt0D� (t � t0); (4.6)

= D∆t: (4.7)

Thus the time-evolved data u(t + ∆t) and v(t + ∆t) are determined as u r k(t + ∆t) +p
D∆t G(0; 1) and vr k(t + ∆t), respectively.
Under the above conditions, a typical time series of u for S0 = 0:1, f = 0:5 and

D = 0:003 is shown in Fig. 4.1. When u takes a larger value than 1, we call that the
system fires. The system cannot fire without fluctuations because of the smallness of S0,
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Figure 4.2 Time seriesof z for f = 0.5 and 0.3 with S 0 = 0.1
and D = 0.003.
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but Fig. 4.1 indicates that it can fire with the help of fluctuations. Let us assume that
only the firing of the system can be observed, and regard

z(t) = Θ(u(t)) �

(
u(t) if u(t) > 1:0

ueq = � 1:2 otherwise
(4.8)

as the output of the system, where ueq is the equilibrium value of u(t) for S(f ; t) =
� (t) = 0. Note that ueq is a solution of a cubic equation

u3 + 3pu + q = 0; (4.9)

p =
1 � �

�
; (4.10)

q =
3
�

; (4.11)

derived from eqs. (4.1) and (4.2) with du=dt = dv=dt = 0, S(f ; t) = 0, and � (t) = 0, and
it is analytically solved as

ueq =

 
� q+

p
q2 + 4p3

2

! 1
3

+

 
� q �

p
q2 + 4p3

2

! 1
3

: (4.12)

In Fig. 4.2, time series of z(t) are shown for f = 0:5 and 0:3 with S0 = 0:1 and
D = 0:003. Because all the peak heights of z(t) are almost identical for each frequency,
only the timing of the firing is essential in z(t).

To measure the correlation between the input S(f ; t) and the output z(t), we define
three measures, namely, the signal-to-noise ratio (SNR), the correlation coefficient C,
and the mutual information I .

First, let us define SNR. The power spectrum P(f ) of the output z(t) is defined as

P(f ) = lim
T !1

1

T

�
�
�
�
�

Z T

0
z(t)ei 2� f t dt

�
�
�
�
�

2

; (4.13)

= lim
N !1

∆p

N

�
�
�
�
�

N � 1X

n=0

z(n∆p)ei 2n� f � p

�
�
�
�
�

2

; (4.14)

where ∆p is the time step to derive P(f ). Using the fast Fourier transform (FFT)
algorithm [103], P(f ) is numerically derived for S0 = 0:1, f = 0:5, D = 0:003, N = 213,
and ∆p = 0:1, and shown in Fig. 4.3, which shows a sharp peak at the frequency f of
the input pulse train. The signal to noise ratio (SNR) is defined as the ratio of the peak
value S at the input frequency f and the power N of background noise, namely

SNR = S=N; (4.15)

which is often used to measure the correlation between the periodic input and the output
in the literature of SR [67, 68, 69, 70].

Next, let us define the correlation coefficient C between the input and output pulse
trains [100]. To incorporate the effect of the firing delay df of the FN model, which is
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Figure 4.3 The power spectrum P (f ) of the output z(t) for
S0 = 0.1, f = 0.5, D = 0.003,N = 213, and � p = 0.1.

the time lag of the firing since an input pulse is injected, the shift t ! t � d f is applied
to the time series of the output pulse train. Then the time series are divided into n bins
of the width ∆b, and the number of pulses in the i -th bin is denoted as X i and Yi for
the input and output pulses, respectively. Note that the width ∆b is sufficiently small
so that X i and Yi take the value 0 or 1. Then X =

P
X i and Y =

P
Yi are the numbers

of input and output pulses respectively, and Z =
P

X i Yi is the number of coincident
firings. A schematic diagram for the derivation of X , Y , and Z is shown in Fig. 4.4.
The correlation coefficient C between the input and output pulse trains is defined as

C =
Z � (X Y )=n

q
X (1 � X=n)Y (1 � Y=n)

2 [� 1; 1]: (4.16)

Consider the periodic input with frequency f such that

X i =

(
1 if i∆b mod f � 1 < ∆b

0 otherwise
: (4.17)

If the output series Yi is identical with X i , namely, if the relation X i = Yi is satisfied
for all i , the correlation coefficient C takes the value 1. If the output series Yi has no
correlation with X i , the correlation coefficient C takes the value 0 in the large n limit.
We set ∆b = 0:5 in the following.

With the variables X i , Yi , and Z i , we can also define the mutual information I
[101, 102]. The empirical distributions P(Yi ) and P(Yi jX i ) are defined as

P(Yi = 1) =
Y
n

; (4.18)
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Figure 4.4 A schematic diagram for the derivation of X , Y , and
Z.

P(Yi = 0) = 1 �
Y
n

; (4.19)

P(Yi = 1jX i = 1) =
Z
X

; (4.20)

P(Yi = 0jX i = 1) = 1 �
Z
X

; (4.21)

P(Yi = 1jX i = 0) =
Y � Z
n � X

; (4.22)

P(Yi = 0jX i = 0) = 1 �
Y � Z
n � X

: (4.23)

Then the mutual information is defined as

I (X i ; Yi ) = H (Yi ) � H (Yi jX i ); (4.24)

H (Yi ) = �
X

Yi 2f 0;1g

P(Yi ) log2 P(Yi ); (4.25)

H (Yi jX i ) = �
X

X i ;Yi 2f 0;1g

P(Yi ; X i ) log2 P(Yi jX i ): (4.26)

Using SNR, the correlation coefficient C, and the mutual information I , we measure
the correlation between the input and output in the system, and investigate their depen-
dences on the fluctuation intensity D . In Fig. 4.5, SNR, C, and I are plotted against the
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0.003. The lines in (a) are the �tting curves given by eq. (4.27)
and the error bars denote the standard deviation for 50 samples.

fluctuation intensity D for f = 0:15, 0:3, and 0:5 with S0 = 0:1. All the measures show
the typical behavior of SR, namely, the existence of the optimal fluctuation intensity
which maximizes the measures.

In many systems, it is reported that the dependence of SNR on the fluctuation
intensity D obeys the relation

SNR =
A
D2

exp
�

�
B
D

�

; (4.27)

where A and B are constants which depend on system parameters [67, 68, 69, 70]. SNR
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takes its maximum at D = D0 given by

D0 =
B
2

: (4.28)

The fitting curves in Fig. 4.5(a) for f = 0:3 and 0:5 indicate that the eq. (4.27) is also
valid for small D in the FN model [75].

Figure 4.5 also shows that the peak height of each measure depends on the input
frequency f . This dependence is investigated in the next section. The optimal fluctuation
intensity also depends on f , and this dependence is investigated by several authors
[73, 76, 77]. But this dependence is very weak and depends also on the measure, as
shown in Fig. 4.5. Thus we do not treat this subject in this paper.

4.3 The Dependence of SR on the Input Frequency

In this section, we examine the dependence of SR on the input frequency f for fixed
parameter values S0 = 0:1 and D = 0:003. As shown in Fig. 4.6, each measure takes a
maximum value at a frequency in the range from 0.5 to 0.6. This frequency preference
may be due to the classical resonance phenomenon between the input frequency and
the sub-threshold time scale of the FN model. An analytical derivation of this optimal
frequency is difficult and it depends also on the measure as shown in Fig. 4.6. In the
following, we call the frequency which maximizes the correlation coefficient C as the
eigenfrequency f e of this model only for convenience, and we treat only the correlation
coefficient C to measure the correlation between the input and output, but the similar
results are obtained also for other measures.

In Fig. 4.6(b), it is observed that the eigenfrequency of this model is f e ' 0:5. The
eigenfrequency f e depends on the system parameters, � ,  , and � , and the waveform
of the input. For a fixed input waveform, by changing the values of � ,  , and � the
eigenfrequency f e can be adjusted by a series of numerical experiments and the system
is denoted by the value of its eigenfrequency as neuron f e. We prepare the three kinds of
neurons f 1, f 2 and f 3, which satisfy the relationships f 1 ' 0:5, f 2 = f 1=

p
2 ' 0:35, and

f 3 = f 1=
p

5 ' 0:22 for convenience in the following sections. The dependence of C on
the input frequency of each neuron f 1, f 2 and f 3 for D = 0:003 is shown in Fig. 4.7(a).
It is observed that the peak of each C is located at each eigenfrequency.

The dependence of C on the fluctuation intensity D for each neuron f i with the input
frequency f i equal to its eigenfrequency, is plotted in Fig. 4.7(b). It is observed that
each neuron has almost the same optimal fluctuation intensity D 0 ' 0:003.

4.4 SR in an Electrically Coupled System

In this section, we treat an electrically, i.e., diffusively coupled FitzHugh-Nagumo model,
written as

� i
dui

dt
= � vi + ui �

u3
i

3
+ S(f ; t) + � i (t) +

1

N

NX

j =1

wij (uj � ui ); (4.29)
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�cien t C, and (c) the mutual information I on the input frequency
f for S0 = 0.1 and D = 0.003.

dvi

dt
= ui � � ivi +  i ; (4.30)

h� i (t)� j (t0)i = D� ij � (t � t0); (4.31)

for i = 1; 2; � � � ; N , where � i ,  i , and � i are system parameters of the i -th neuron and
� ij denotes Kronecker’s delta. Note that the connection of each neuron is electrical, the
periodic pulse train S(f ; t) is applied to all the neurons, and fluctuations for different
neurons are statistically independent.

Firstly, let us examine the effect of the coupling strength w ij . For N = 2, � 1 = � 2 =
0:8,  1 =  2 = 0:7, � 1 = � 2 = 0:1 and w12 = w21 = w, since the behaviors of the two
neurons may be statistically identical by the symmetry of the system, only z 1 � Θ(u1)
is observed as the output.

In Fig. 4.8, The correlation coefficient C is plotted against D for w = 0, 0.2, and 1.0,
with S0 = 0:1 and f = 0:5. Similarly to the one neuron case, each C has a maximum,
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but the optimal fluctuation intensities D 0’s take different values depending on w. In
Fig. 4.9, the optimal fluctuation intensity D 0(w) for the coupling strength w is plotted
against w. It is observed that D0(w) is an increasing function of w and converges to
D0(1 ) ' 0:0055.

To analyze the dependence of D 0(1 ) on N generally, let us consider a coupled sys-
tem composed of N oscillating neurons. For i = 1; 2; � � � ; N , by introducing x (i ) =
(x(i )

1 ; x (i )
2 ; � � � ; x (i )

d )t , η(i ) = (� (i )
1 ; � (i )

2 ; � � � ; � (i )
d )t , and a d-dimensional diagonal matrix A

with positive diagonal components A1; � � � ; Ad, a coupled system is written as

dx(i )

dt
= F (x(i )) + wA

0

@ 1

N

NX

j =1

x(j ) � x(i )

1

A + η(i ) ; (4.32)

h� (i )
k (t)� (j )

l (t0)i = Dk � ij � kl � (t � t0); (4.33)

i; j = 1; 2; � � � ; N; and k; l = 1; 2; � � � ; d;

where F (x(i )) generates the internal motion of the i -th neuron and w denotes the coupling
strength. Let us define the mean value X and the deviation � x(i ) from X as

X =
1

N

X

i

x(i ) ; (4.34)

� x(i ) = x(i ) � X; (4.35)
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then X and � x(i ) obey

dX

dt
= F (X) +

NX

i =1

η(i )

N
+ O(j� x(i ) j2); (4.36)
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d
dt

� x(i ) = (DF (X) � wA) � x(i ) + η(i ) �
NX

j =1

η(j )

N
+ O(j� x(i ) j2); (4.37)

where DF (x) is the Jacobian matrix of F (x). In the large w limit, eq. (4.37) becomes

d
dt

� x(i ) = � wA� x(i ) + η(i ) �
NX

j =1

η(j )

N
; (4.38)

thus the variance of � x(i ) is estimated to be

h(� x(i )
k )2i '

(1 � N � 1)Dk

2wAk
: (4.39)

Equations (4.35), (4.36), and (4.39) indicate that the dynamics of each neuron for large
w approaches to the dynamics of the single neuron with the scaled fluctuation intensity
Dk=N (k = 1; 2; � � � ; d).

For the coupled FitzHugh-Nagumo model with uniform coupling, d = 2, A 1 = 1=� ,
A2 = 0, D1 = D=� 2, D2 = 0, and eq. (4.38) is modified to

d
dt

� x (i )
1 = �

w
�

� x (i )
1 + � (i )

1 �
NX

j =1

� (j )
1

N
; (4.40)

d
dt

� x (i )
2 = � x (i )

1 � � � x (i )
2 : (4.41)

Thus the variance of � x (i )
2 can be estimated to be

h(� x(i )
2 )2i '

h(� x(i )
1 )2i

� (� + � � 1w)
; (4.42)

�
1

w2 ; (4.43)

and it can be concluded that the dynamics of each neuron for large w is governed by
eq. (4.36). Thus, between the optimal fluctuation intensity D (N )

0 (1 ) for N neurons and

D (1)
0 (1 ) for a single neuron, the relation

D (N )
0 (1 ) = N D (1)

0 (1 ) (4.44)

holds. As shown in Fig. 4.10, numerically observed D (N )
0 (1 ) shows a good agreement

with eq. (4.44). The asymptotic value D (N )
0 (1 ) is estimated by D (N )

0 (w) with w = 2:0,
which is large enough for the saturation of D0(w) (see Fig. 4.9).

As shown in eq. (4.36), for finite w, the intensity of the effective fluctuation on
the mean motion X depends on � x(i ) . Since the magnitude of � x(i ) is thought to be a
decreasing function of w, the effective fluctuation intensity is also a decreasing function
of w leading to a conclusion that the optimal fluctuation intensity D 0(w) is an increasing
function of w as shown in Fig. 4.9. Further analysis on D0(w) is a future work.
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4.5 Separation of a Superimposed Periodic Pulse

Train

Using the preceding properties of SR, we construct a network which can separate a
superimposed periodic pulse train (SPPT) by tuning the fluctuation intensity.

Let us define SPPT as
T(t) = max

1� k� m
S(f k ; t); (4.45)

where m is the number of periodic components and f k is the frequency of each component.
In the following, we set m = 3, f 1 = 0:5, f 2 = f 1=

p
2, and f 3 = f 1=

p
5. As shown in Fig.

4.11, the SPPT T(t) is applied to the network composed of three subnetworks, where each
subnetwork contains ten neurons with the eigenfrequency f k and the coupling strength
wk (k = 1; 2; 3), that is, each subnetwork is governed by eqs. (4.29) and (4.30) with
N = 10, wij = wk , and T(t) instead of S(f ; t). Note that T(t) and the statistically
independent fluctuations with the same intensity D are applied to all the thirty neurons,
and the output Z (t) of the network is defined as

Z (t) =
3X

k=1

z(k)
1 (t) =

3X

k=1

Θ(u(k)
1 (t)); (4.46)

where z(k)
1 is the output of the k-th subnetwork.

The correlation coefficients Ck ’s (k = 1; 2; 3) which measure the correlations between
Z (t) and the periodic pulse trains with frequency f k are plotted against the fluctuation
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intensity D for w1 = w2 = w3 = 0 in Fig. 4.12, and we observe that the optimal
fluctuation intensities are almost identical for the three frequencies. It is because the
optimal fluctuation intensities of all the neurons are almost identical for w1 = w2 = w3 =
0.

On the other hand, as shown in Fig. 4.13, each Ck has the different optimal fluctuation
intensity for w1 = 2:0, w2 = 0:8, and w3 = 0:6. If the fluctuation intensity D is set around
0.008, 0.015, or 0.04, then the output signal Z (t) is dominated by a periodic motion
with the frequency f 3, f 2, or f 1, respectively, since, at each fluctuation intensity, the
correlation coefficient at the corresponding frequency is superior compared with those at
the other frequencies. Thus a separation of SPPT by controlling the fluctuation intensity
is realized.

This result implies that the fluctuations cannot only enhance weak signals, but also
control the response of the system.

4.6 Results and Discussions

Using the properties of SR in a coupled system, a new feature in a noisy neural network
is reported. In the case of a single neuron, the existence of the optimal fluctuation
intensity and the optimal input frequency is observed in the single FitzHugh-Nagumo
model. The former is a common characteristic of the conventional SR phenomena, and
the latter is caused by the classical resonance between the input frequency and the
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sub-threshold time scale of the FitzHugh-Nagumo model. The optimal frequency can
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be controlled by parameters of the system. In the case of the two neurons, the optimal
fluctuation intensity is found to be an increasing function of the coupling strength and the
relationship between its saturation value and the number of coupled neurons is derived
analytically. Using this property, a network composed of thirty neurons, which can
separate a superimposed periodic pulse train by controlling the fluctuation intensity, is
constructed. In Ref. [89], Collins et al. considered an ensemble of the FitzHugh-Nagumo
models, and examined the dependence of the normalized power norm, which measures the
correlation between the aperiodic input and the output of the system, on the fluctuation
intensity. They found the flattening of the normalized power norm for sufficiently large
number of neurons in the ensemble, and suggested that the sensory systems could detect
weak signals without tuning the fluctuation intensity. Similar results, that is, the increase
of the optimal fluctuation intensity with the magnitude of coupling strength (Fig. 4.9)
and with the number of neurons (Fig. 4.10), are observed in our numerical experiments,
but the separation of SPPT suggests that the fluctuation intensity might control the
response of the system and play a similar role to a parameter of dynamical systems.

In the problem of the information processing in the brain, the question of what carries
the information in the brain is controversial. From physiological experiments, a single
neuron is known to operate under a very noisy environment and its response seems to be
stochastic, thus it might be natural to assume that the information is coded in the firing
rate of a single neuron or an ensemble of neurons. On the other hand, there is a hypothesis
called temporal coding, which claims that the information is coded spatio-temporally by
the temporal formation of cell assemblies whose neurons are spiking correlatively [99].
Because the exact timing of spiking is important for the temporal coding, it seems to
be difficult to construct a network composed of physiological stochastic neurons, which
communicate using the temporal coding. But the fluctuation-induced enhancement of
the correlation between the input and the output, which is one of the properties of SR,
may make the temporal coding possible. Although we have treated periodic inputs and
Gaussian white noise, SR is observed for aperiodic inputs [85, 86, 87, 89], for colored
noise [74, 76, 87], and for the fluctuations in the sum of presynaptic inputs [83, 84, 85, 86].
Thus there is a possibility that SR plays an important role in the neural information
processing.
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Chapter 5

Arra y-Enhanced Sto chastic
Resonance

5.1 Introduction

As shown in Fig. 4.8, the peak value Cpeak of the correlation coefficient C also depends
on the coupling strength w, and it is known that Cpeak takes a maximum against the
coupling strength w for systems with the large number N of neurons. Such a phenomenon
where the correlation between the input and the output takes a maximum as a function of
not only the fluctuation intensity but also the coupling strength is called array-enhanced
stochastic resonance (AESR) and observed in some nonlinear systems [95, 96, 97].

The term AESR is introduced by Linder et al. [96] to describe the enhancement of
the output SNR of a chain of periodically driven damped oscillators, and they found that
the degree of synchronization of the elements is also maximized when the output SNR
is optimized. Similar phenomenon is also observed in a circuit of diode resonators [97].

Though the above researches treat only the system with periodic inputs, it it known
that the coupling of the elements also enhances the “coherence” and the degree of syn-
chronization of the elements of the system without the common periodic signal, and
this phenomenon is called array-enhanced coherence resonance [98]. Thus the array-
enhancement is thought to be the universal phenomenon independent of the input.

In this chapter, we consider the mechanism of AESR in the electrically coupled
FitzHugh-Nagumo model. In Sec. 5.2, the properties of AESR are introduced, namely,
the scaling of the optimal fluctuation intensity in the large coupling limit, and the en-
hancement of the correlation between the input and the output caused by the coupling.
In Secs. 5.3 and 5.4, we transform the dynamics of the network of N neurons into that of
the mean dynamics X and the deviation � x(i ), and construct the models which describe
AESR. It is found that AESR is caused by the correlation between the mean dynamics
X and the deviation � x(i ) . In Sec. 5.5, we investigate the characteristics of the fluctu-
ations of the deviation � x(i ) and consider why the model deviates from the dynamics of
the network of N neurons. Results and discussions are given in the final section.
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5.2 AESR in the Electrically Coupled FN model

In this chapter, we treat the electrically coupled FitzHugh-Nagumo model governed by
eqs. (4.1), (4.2), (4.3), and (4.4) again. The parameters are fixed at S0 = 0:1, h = 0:3,
and f = 0:5.
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Figure 5.1 The dependenceof the correlation coe�cien t C on the
uctuation intensity D for w = 0, 0.5, 1.0, and 2.0 with N = 10.

The dependence of the correlation coefficient C on the fluctuation intensity D for
w = 0, 0:5, 1:0, and 2:0 with N = 10 is shown in Fig. 5.1. The data for each w shows
the typical property of stochastic resonance, namely, the existence of the maximum of the
correlation coefficient C as a function of the fluctuation intensity D . It is also observed
that the optimal fluctuation intensity D 0 increases with the increase of the coupling
strength w, and the maximum value Cpeak of C depends on w.

The dependence of the optimal fluctuation intensity D 0 on the coupling strength w
for N = 10, 50, and 100 is shown in Fig. 5.2. For large w, it is observed that D0

converges to the value dependent on the number N of neurons. As shown in Chap. 4,
the asymptotic value D (N )

0 (1 ) of the optimal fluctuation intensity for the network of N
neurons satisfies

D (N )
0 (1 ) = N D (1)

0 (1 ): (5.1)

The dependence of Cpeak on the coupling strength w for N = 10, 50, and 100 is shown
in Fig. 5.3, and it is observed that Cpeak takes a maximum as a function of w. This
phenomenon where the correlation between the input and the output takes a maximum
as a function of not only the fluctuation intensity but also the coupling strength is called
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array-enhanced stochastic resonance (AESR) and observed in some nonlinear systems
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[95, 96, 97].
In the following sections, we analyze the mechanism of AESR in the electrically

coupled FitzHugh-Nagumo model.

5.3 Model of AESR: Approximation 1

To analyze the mechanism of AESR, the dynamics of the coupled FN model composed
of N neurons is rewritten as

dx(i )

dt
= F (x(i )) +

w
�

A
�
X � x(i )

�
+

1

�
η(i ) ; (5.2)

X =
1

N

NX

i =1

x(i ) ; (5.3)

h� i (t)� j (t0)i = D� ij � (t � t0); (5.4)

i; j = 1; 2; � � � ; N;

where x(i ) = (x(i )
1 ; x (i )

2 )t = (ui ; vi)
t , η(i ) = (� i ; 0)t , and A is a two dimensional diag-

onal matrix with diagonal components A1 = 1 and A2 = 0. Note that F (x(i )) =
(F1(x

(i )); F2(x
(i )))t with

F1(x
(i )) =

1

�

 

� vi + ui �
u3

i

3
+ S(f ; t)

!

; (5.5)

F2(x
(i )) = ui � � vi +  ; (5.6)

denotes the internal motion of the i -th neuron. Let us define the deviation � x (i ) of the
i -th neuron from the mean dynamics X as

� x(i ) = x(i ) � X: (5.7)

As shown in Sec. 4.4, the variables X and � x(i ) obey

dX

dt
= F (X) +

1

� N

NX

i =1

η(i ) + O(j� x(i ) j2); (5.8)

d
dt

� x(i ) =
�

DF (X) �
w
�

A
�

� x(i ) +
1

�

0

@η(i ) �
1

N

NX

j =1

η(j )

1

A + O(j� x(i ) j2); (5.9)

where DF (x) is the Jacobian matrix of F (x). In the large w limit, eq. (5.9) becomes

d
dt

� x (i )
1 = �

w
�

� x (i )
1 +

1

�

0

@� i �
1

N

NX

j =1

� j

1

A ; (5.10)

d
dt

� x (i )
2 = � x (i )

1 � � � x (i )
2 ; (5.11)
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where � is the parameter in eq. (4.2). Thus the variances of � x (i )
1 and � x(i )

2 are estimated
to be

h(� x(i )
1 )2i '

(1 � N � 1)D
2� w

; (5.12)

h(� x(i )
2 )2i '

h(� x(i )
1 )2i

� (� + � � 1w)
; (5.13)

�
1

w2
: (5.14)

As shown in eqs. (5.12) and (5.14), h(� x(i )
1 )2i and h(� x(i )

2 )2i converge to zero in the large
w limit, thus the mean dynamics X approaches to the dynamics of the single neuron
governed by eq. (5.8).

To analyze AESR, let us take the quadratic term in eq. (5.8) into consideration.
From the definition (5.3), the dynamics of X is written as

dX

dt
=

1

N

NX

i =1

F (x(i )) +
1

� N

NX

i =1

η(i ) ; (5.15)

= F (X) +
1

� N

NX

i =1

η(i ) + ε; (5.16)

where

ε �
1

N

NX

i =1

F (x(i )) � F (X): (5.17)

Obviously the second component of the deviation ε is zero, thus we consider only the
first component

� =
1

N

NX

i =1

F1(x
(i )) � F1(X); (5.18)

of ε in the following. From eq. (5.5), the deviation � is calculated to be

� = �
1

� N

NX

i =1

0

@X 1(� x (i )
1 )2 +

(� x (i )
1 )3

3

1

A ; (5.19)

' �
X 1

� N

NX

i =1

(� x (i )
1 )2; (5.20)

= �
1

�
X 1(� x1)

2; (5.21)

where

(� x1)
2 �

1

N

NX

i =1

(� x (i )
1 )2: (5.22)

The time series of (� x1)
2 and X 1 for N = 50, w = 10, and D = 0:125 are shown in

Fig. 5.4. It is observed that (� x1)
2 largely fluctuates around its mean value. From eq.
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Figure 5.4 The time seriesof (δx1)2 and X1 for N = 50,w = 10,
and D = 0.125.

(5.12), the expectation h(� x1)
2i of (� x1)

2 is estimated to be

h(� x1)
2i =

1

N

NX

i =1

h(� x(i )
1 )2i ; (5.23)

'
(1 � N � 1)D

2� w
; (5.24)

� h(� x1)
2i app1: (5.25)

Meanwhile, let us define the numerically obtained mean value h(� x 1)
2i sim of (� x1)

2

as

h(� x1)
2i sim � lim

T !1

1

T

Z T

0
(� x1)

2dt: (5.26)

In Fig. 5.5, h(� x1)
2i app1 and h(� x1)

2i sim for N = 10 and 50 along the curves in w � D
plane in Fig. 5.3 are plotted against w. It is observed that h(� x 1)

2i app1 well describes
the behavior of h(� x1)

2i sim for large w.

Based on the above discussions, let us describe the mean dynamics X by

dX

dt
= F (X) +

1

�
η̂ + ε; (5.27)

η̂ � (�̂ ; 0)t ; (5.28)

ε �
�

�
1

�
X 1h(� x1)

2i sim ; 0
� t

; (5.29)

ĥ� (t)�̂ (t0)i = D=N � (t � t0): (5.30)
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Figure 5.5 The valuesof h(δx1)2i app1 and h(δx1)2i sim for N = 10
and 50 along the curves in w � D plane in Fig. 5.3 are plotted
against w.

Note that this model is derived by substituting the constant value h(� x 1)
2i sim for (� x1)

2

in eq. (5.21). In the following, the system governed by eqs. (5.27) and (5.29) is called as
the approximation 1. The numerical simulations of the approximation 1 are performed
as follows:

� Fix a set of values of w and D on the curve in the w � D plane in Fig. 5.2;

� Numerically obtain the value of h(� x 1)
2i sim for the network of N neurons with the

above fixed w and D ;

� Obtain the correlation coefficient C for the approximation 1 with the above D and
h(� x1)

2i sim .

The dependences of the peak values Cpeak’s of the correlation coefficient C on the coupling
strength w of the approximation 1 and the network of N neurons are compared in Fig.
5.6. It is observed that the approximation 1 does not show the enhancement of Cpeak.
In other words, the quadratic term (� x1)

2 modeled by the constant h(� x1)
2i sim cannot

reproduce the properties of AESR.

In the next section, we take the correlation between h(� x 1)
2i and the mean dynamics

X into consideration.
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Figure 5.6 The dependencesof the peak values Cpeak 's of the
correlation coe�cien t C on the coupling strength w of the approx-
imation 1 and the network of N neurons.

5.4 Model of AESR: Approximation 2

With the term DF (X), eq. (5.9) is modified to

d
dt

� x (i )
1 = �

1

�
(w + X 2

1 � 1)� x (i )
1 �

1

�
� x (i )

2 +
1

�
�̃ i ; (5.31)

h̃� i (t)�̃ j (t0)i = (1 � N � 1)D� ij � (t � t0): (5.32)

Equation (5.31) indicates that the statistics of � x (i )
1 depends on the mean dynamics X 1

of the N neurons.
As shown in the Appendix A, for large (w � 1)=� > 0, h(� x 1)

2i is estimated to be

h(� x1)
2i app2 =

(1 � N � 1)D
2� (w � 1 + X 2

1)
: (5.33)

Note that h(� x1)
2i app2 is interpreted as the variance of the Ornstein-Uhlenbeck process

governed by eq. (5.31) with � x (i )
2 = 0 and the constant X 1.

Let us consider the approximation 2 governed by eq. (5.27) with

ε �
�

�
1

�
X 1h(� x1)

2i app2; 0
� t

: (5.34)

The dependences of Cpeak’s of the approximation 2 and network of N neurons on w are
shown in Fig. 5.7. It is observed that the enhancement of Cpeak for w > 0 is qualitatively
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Figure 5.7 The dependencesof Cpeak 's of the approximation 2
and network of N neuronson w.

described by the approximation 2.

From the above discussions, it can be concluded that AESR is caused by the cor-
relation between the term (� x 1)

2 and the mean dynamics X 1 of N neurons. Let us
understand this mechanism by observing the time series of h(� x 1)

2i app2 and X 1 shown in
Fig. 5.8. It is observed that h(� x1)

2i app2 is positively perturbed when the mean dynamics
X 1 generates a pulse and when it resets to the equilibrium. This positive perturbation
acts as a positive input to the dynamics of X 1 for X 1 < 0 through eq. (5.21), thus the
enhancement of Cpeak takes place.

Meanwhile, as shown in Fig. 5.7, Cpeak of the approximate 2 takes smaller values than
that of the network of N neurons even for large w. It might be because the deviation of
(� x1)

2 from the expectation h(� x1)
2i app2 is large and cannot be neglected. This effect is

considered in the next section.

5.5 Characteristics of Fluctuations of (� x 1)2

If the fluctuations of (� x1)
2 cause the deviation of the approximation 2 from the net-

work of N neurons, they must enhance Cpeak of the approximation 2 as shown in Fig.
5.7. However, the fluctuations of (� x1)

2 without the correlations with X 1 and h(� x1)
2i

might lower the values of Cpeak. In this section, we investigate the characteristics of the
fluctuations of (� x1)

2, and consider how Cpeak of the approximation 2 is enhanced.

The time series of the fluctuations of (� x1)
2 is shown in Fig. 5.9, and it is observed

that the fluctuations have large intensity and cannot be neglected in comparison with
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Figure 5.8 The time seriesof h(δx1)2i app2 and the meandynam-
ics X1 of N neuronsfor N = 50, w = 10, and D = 0.125.

h(� x1)
2i app2.
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Figure 5.9 The time seriesof the uctuations of (δx1)2. The
time seriesof X1 and h(δx1)2i app2 are also shown.
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The probability density function of the fluctuations of (� x 1)
2 is shown in Fig. 5.10.

It is observed that it is highly asymmetric, thus the fluctuations of (� x 1)
2 tend to take

large positive values. Note that the large positive fluctuations of (� x 1)
2 help the mean

0.01

0.1

1

10

100

-0.08 -0.04 0 0.04 0.08

P

(dx )   -2
1 <(dx )  >app22

1

Figure 5.10 The distribution of the uctuations of (δx1)2.

dynamics X 1 to fire because the term / � X 1(� x1)
2 in eq. (5.21) gives the positive

influences to X 1(< 0) in the equilibrium.
Furthermore, the variance of (� x 1)

2 is written as

Var[(� x1)
2] = Var

"
1

N

NX

i =1

(� x (i )
1 )2

#

; (5.35)

�
1

N 2

NX

i =1

Var
h
(� x (i )

1 )2
i

; (5.36)

=
1

N 2

NX

i =1

h
h(� x(i )

1 )4i � h(� x(i )
1 )2i 2

i
: (5.37)

With the assumption that the distribution of (� x1)
2 is Gaussian, h(� x(i )

1 )4i is written as

h(� x(i )
1 )4i = 3h(� x(i )

1 )2i 2; (5.38)

thus the variance of (� x1)
2 is written as

Var[(� x1)
2] =

2

N
h(� x(i )

1 )2i 2; (5.39)

=
2

N

 
(1 � N � 1)D

2� (w � 1 + X 2
1)

! 2

: (5.40)
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Equations (5.39) and (5.40) indicate that the fluctuations of (� x1)
2 correlate with X 1 and

h(� x1)
2i . As shown in Fig. 5.11, the power-spectrum of the square of the fluctuations of

(� x1)
2 has peaks at the input frequency f = 0:5 and its higher harmonics. These peaks

f

P(f)

1e-08

1e-07

0 1 2 3 4 5

Figure 5.11 The power-spectrum of the square of the uctua-
tions of (δx1)2.

reflect eq. (5.40) and indicate that the fluctuations of (� x 1)
2 contain the time scale of

X 1. As shown in eqs. (5.39) and (5.40), the fluctuations of (� x1)
2 take large value when

h(� x1)
2i is large, thus it can be concluded that the fluctuations of (� x1)

2 helps the mean
dynamics X 1 to fire when X 1 positively deviates from the equilibrium X 1 ' � 1:2.

The above characteristics, namely, the asymmetry of the distribution and the correla-
tion between the fluctuations of (� x1)

2 and X 1, cause the deviation of the approximation
2 from the network of N neurons.

On the other hand, the deviation of the approximation 2 from the network of N
neurons becomes larger for the large N as shown in Fig. 5.7. This observation can
be understood in the following way. With the nonlinear terms, the dynamics of the
deviation � x (i )

1 (eq. (5.31)) is strictly governed by

d
dt

� x (i )
1 = �

1

�
(w + X 2

1 � 1)� x (i )
1 �

1

�
� x (i )

2 +
1

�
�̃ i

�
1

�

0

@X 1(� x (i )
1 )2 +

(� x (i )
1 )3

3

1

A

+
1

� N

NX

j =1

0

@X 1(� x (j )
1 )2 +

(� x (j )
1 )3

3

1

A : (5.41)
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The term X 1(� x (i )
1 )2 in the second line and the term (1=N )

P
j X 1(� x (j )

1 )2 in the third line
in eq. (5.41) have the size � N with a large but fixed w because of eq. (5.33) and the
scaling D � N . Thus the approximation with eq. (5.31) cannot hold for the large N .

5.6 Results and Discussions

The array-enhanced stochastic resonance (AESR) in the coupled FitzHugh-Nagumo
model is investigated. AESR is characterized by the following two properties, namely, the
scaling of the optimal fluctuation intensity D (N )

0 (1 ) for N neurons with the sufficiently
large coupling strength obeying

D (N )
0 (1 ) = N D (1)

0 (1 ); (5.42)

and the enhancement of the maximum value Cpeak of the correlation coefficient C as a
function of the coupling strength w.

By transforming the dynamics of N neurons into that of the mean dynamics X

and the deviation � x(i ) , it is found that AESR is caused by the term / � X 1(� x1)
2,

particularly by the correlation between (� x 1)
2 and X 1.

The characters of the fluctuations of (� x1)
2 are also investigated, and it is found that

the deviation of the peak value Cpeak of the approximation from that of the network of
N neurons is caused by the asymmetry of the distribution of the fluctuations of (� x 1)

2,
and the correlation between the fluctuations of (� x1)

2 and the mean dynamics X 1.
Note that our analyses are independent of the input, thus the above discussions

are also applicable to the array-enhancement in the system without the input, namely,
array-enhanced coherence resonance [98].

As for the information processing in the neural system, AESR gives a mechanism
for an effective regulation of the fluctuation intensity even for the “uncontrollable” fluc-
tuations. As shown in Fig. 5.12(a), the regulation of the fluctuation intensity in the
w � D plane is represented by a vertical arrow, and the dependence of the correlation
coefficient C on the fluctuation intensity D along this arrow is shown in Fig. 5.1. Note
that the correlation coefficient C takes a maximum when the arrow crosses the curve
which shows the optimal fluctuation intensity. On the other hand, a horizontal arrow
in Fig. 5.12(a) represents the regulation of the coupling strength, and the dependence
of C on the coupling strength w along this arrow is shown in Fig. 5.12(b). It is shown
that the correlation coefficient takes a maximum when w crosses the curve of optimal
fluctuation intensity shown in Fig. 5.12(a). Thus the regulation of w might work as a
mechanism for the effective regulation of the fluctuation intensity even for the “uncon-
trollable” fluctuations in the neural system.
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Figure 5.12 (a) The dependenceof the optimal uctuation in-
tensity D0 on the coupling strength w for N = 10. (b) The de-
pendenceof the correlation coe�cien t C on the coupling strength
w for D = 0.015 and N = 10.
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Chapter 6

Sto chastic Resonance in the
Net work with Dela ys

6.1 Introduction

As stated in Secs. 2.3 and 2.4, the transmission delay depends on the distance between
neurons. It is known that there are very long axons which regulate the transmission
delays in the brain stem of the barn owl. The barn owl utilizes these delays to locate
the sound sources by detecting the interaural time difference of the signal with the
coincidence detector [64].

In this chapter, based on Ref. [94], we investigate an electrically coupled FitzHugh-
Nagumo model with a time delay. In Sec. 6.2, an electrically coupled FitzHugh-Nagumo
model with a time delay is defined. In Sec. 6.3, the dynamics of the coupled model is
considered. With an appropriate set of system parameters, a deterministic firing induced
by additive fluctuations is observed, and its dependence on the number of neurons is
investigated. In Sec. 6.4, we construct a network composed of two assemblies and
examine a competitive behavior in the network by controlling the fluctuation intensity.
Results and discussions are given in the last section.

6.2 An Electrically Coupled FN Model with Delay

In this chapter, we treat an electrically coupled FitzHugh-Nagumo (FN) model with a
time delay, written as

�
dui

dt
= � vi + ui �

u3
i

3
+ wgi (t) + S(f ; t) + � i (t) (6.1)

dvi

dt
= ui � � vi +  ; (6.2)

gi (t) =

8
><

>:

X

j 6= i

1

N � 1
(uj (t � dp) � ui(t)) if N � 2

0 if N = 1

; (6.3)
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S(f ; t) =

(
S0 if t � h mod f � 1

0 otherwise
; (6.4)

h� i (t)� j (t0)i = D� ij � (t � t0); (6.5)

for i; j = 1; 2; � � � ; N , where � = 0:8,  = 0:7, � = 0:1, gi (t) is the coupling term,
and dp is a time delay from the j -th neuron to the i -th neuron. Note that fluctuations
for different neurons are statistically independent, the coupling strengths and the time
delays are uniform in the network, and the coupling is electrical, i.e., for a large enough
w and dp = 0 the neurons synchronize each other. The parameters of the periodic pulse
train S(f ; t) are set as f = 0:1, S0 = 0:15, and h = 0:3. Note that the height S0 is so
small that no neuron generates a pulse without fluctuations.

By the symmetry of the system, the behaviors of all the neurons are statistically
identical, and we regard the internal state u1 of the first neuron as the output of the
network.

6.3 Fluctuation-induced Deterministic Firing

0
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0 0.003 0.006 0.009 0.012
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C

=0.16w

w= 0.0

=0.12w

Figure 6.1 The dependenceof the correlation coe�cien t C on
the uctuation intensity D for dp = 10.

Firstly, the system with N = 2 is considered for simplicity. The frequency of the
input pulse train is fixed at f = 0:1.

For dp = 10, the firing at some moment may affect the firing in the next period of
S(f ; t) since 1=f = 10. The dependence of the correlation coefficient C on the fluctuation
intensity D for w = 0, 0:12 and 0:16 with dp = 10 is shown in Fig. 6.1. Similarly to the
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case of dp = 0 treated in Chap. 4, the correlation coefficient C has a peak at an optimal
fluctuation intensity D 0 for w = 0, and D0 increases with the increase of w. But it is
also observed that the peak value of C decreases with the increase of w, unlike the case
of dp = 0. This difference of the behavior for dp = 0 and 10 may come from the fact that
the synchronized solution u1(t) = u2(t � dp) and u2(t) = u1(t � dp) cannot lock to the
input pulse train S(f ; t) for dp = 10.
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=0.12w

Figure 6.2 The dependenceof the correlation coe�cien t C on
the uctuation intensity D for dp = 10� df ' 9.7.

Next, we treat the case with dp = 1=f � df ' 9:7, where df is the time lag of firing
since an input pulse is injected. Note that in this case an output pulse, which fires
with the delay df after an input pulse is injected, can synchronize with the next input
pulse. The correlation coefficient C for w = 0, 0:12, and 0:16 with dp = 9:7 is plotted in
Fig. 6.2, where each C shows the existence of the maximum. Note that the maximum
of C for w = 0:12 reaches almost 1, which indicates that for D ' 0:001, fluctuation-
induced deterministic firing (FIDF), namely, a 1:1 phase locking between the input and
the output, takes place. For w = 0:16, this locking behavior is broken and the maximum
decreases to about 0.1.

To investigate the range of w where FIDF takes place, the correlation coefficient C
with the fixed fluctuation intensity D = 0:001 for dp = 0, 9:7, and 10 is plotted against w
in Fig. 6.3. It shows that the coupling strength w which enables FIDF is around w = 0:12
for dp = 9:7. FIDF also takes place for N > 2 with dp = 9:7 and w ' 0:12 (data not
shown), but its optimal fluctuation intensity D 0 has a dependence on the number N of
neurons. D0 is shown as a function of N in Fig. 6.4. The monotonic increase of D0 with
N , and the convergence of D0 to about 0.002 is observed.
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Figure 6.3 The dependenceof the correlation coe�cien t C on
the coupling strength w for dp = 0, 9.7, and 10 with D = 0.001.

6.4 Competition of Two Assemblies under Fluctu-

ations

Using the preceding properties of SR in an electrically coupled FN model with a time de-
lay, we construct a network composed of two assemblies, in which a competitive behavior
takes place by controlling the fluctuation intensity. Firstly, let us define the superimposed
periodic pulse train (SPPT) as

T(t) = max
1� i � m

S(f i ; t); (6.6)

where m is the number of periodic components, and f i is the frequency of each periodic
component. In the following, we set m = 2, f 1 = 0:1, f 2 = f 1=

p
2, and S0 = 0:15.

Note that the height S0 of T(t) is so small that it cannot make each neuron generate a
pulse without fluctuations. The SPPT T(t) is injected to the network composed of two
assemblies, shown in Fig. 6.5. The assembly 1 is composed of two neurons, namely,
eqs. (6.1) and (6.2) with N = N1 = 2, dp = d1 � 1=f1 � df and T(t) instead of
S(f ; t), and assembly 2 is composed of eight neurons, namely, eqs. (6.1) and (6.2) with
N = N2 = 8, dp = d2 � 1=f2 � df and T(t) instead of S(f ; t). Note that there is a
neuron which belongs to both assemblies simultaneously, and we regard its output as the
output of the network. The coupling strength w is set at w = 0:12 so that FIDF takes
place with a suitable fluctuation intensity. By the definition of the delay d1 and d2, it
is expected that FIDFs with frequency f 1 and f 2 take place in the assembly 1 and 2,
respectively. Then two correlation coefficients C1 and C2 are defined as the correlations
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Figure 6.4 The dependenceof the optimal uctuation intensity
D0 on the number N of neuronsfor the uctuation-induced deter-
ministic �ring.

Assembly 1

Assembly 2

Observed
  Neuron

d1dp=

d2dp=

2N1=

8N2=

Figure 6.5 A network composedof two assemblies.

between the output pulse train of the network and the periodic pulse train S(f 1; t) and
S(f 2; t), respectively. A large C1 indicates that the observed neuron is dominated by the
synchronized oscillation in the assembly 1, and a large C2 indicates the domination of
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Figure 6.6 The dependencesof the correlations C1 and C2 on
the uctuation intensity D.

the assembly 2.
The dependences of C1 and C2 on the fluctuation intensity D are shown in Fig. 6.6,

which indicates that the optimal fluctuation intensity D 0 is D0 ' 0:001 for C1, and
D0 ' 0:002 for C2. Note that C1 is suppressed when C2 is around the maximum value.
The difference between the optimal fluctuation intensities for C1 and C2 is caused by the
fact that the optimal fluctuation intensity D 0 depends on the number N of neurons (see
Fig. 6.4).

The above phenomenon shows some new features of noisy pulse neural networks. The
dominant frequency of the SPPT T(t) in the network is controlled by the fluctuation
intensity. In other words, the SPPT T(t) is separated to each periodic component by
controlling the fluctuation intensity. This implies that the fluctuation in a network
might be used as a parameter of its dynamics. Secondly, the synchronously oscillating
assembly is rearranged by controlling the fluctuation intensity. For example, for D '
0:001, the observed neuron belongs mainly to the assembly 1 in which each neuron fires
synchronously with frequency f 1, and for D ' 0:002, it belongs to the assembly 2 in
which the periodic firing with frequency f 2 is dominant. These new features suggest that
the fluctuations in the brain might have a functional role in the information processing.

6.5 Results and Discussions

Concerning SR, new features of the noisy pulse neural network with a time delay are
reported. When the time delay dp and the frequency f of the periodic input pulse train
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satisfy the relationship dp = 1=f , an optimal fluctuation intensity which maximizes the
correlation coefficient increases with the increase of the coupling strength, and the peak
value of the correlation coefficient decreases with the increase of the coupling strength.
For the time delay dp = 1=f � df dependent on the firing delay df , a deterministic firing
is induced at the optimal fluctuation intensity, which increases with the increase of the
number of neurons.

Using these properties, a network composed of two assemblies is constructed. It
separates a superimposed periodic pulse train, and its dynamics can be controlled by
fluctuations. In this network, the rearrangement of the synchronously oscillating assem-
bly by controlling the fluctuation intensity is observed.
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Chapter 7

Fluctuation-induced Memory
Retriev al

7.1 Introduction

The associative memory in neural networks has been investigated for more than twenty
years. In the autocorrelative associative memory model, the bit patterns are stored in
the connection coefficients of the network and the stored patterns are retrieved using the
neural dynamics.

Conventionally, the carrier of the information in associative memory models is thought
to be the firing rate of a single neuron or an ensemble of neurons. Recently, there
has been considerable interest in associative memory of neural networks composed of
model neurons which change their dynamical states temporally, such as chaotic neurons
[104, 105], oscillator neurons [106, 107, 108, 109, 110, 111, 112, 113], or spiking neurons
[115, 116, 117, 118]. These networks are not only of theoretical interest, but also may
have a lot to do with the problem of information coding in the brain [99].

Numerous authors have investigated coupled phase oscillators [106, 107, 108, 109, 110,
111, 112,113], which are the general reduced model of the coupled limit-cycle oscillators.
In this case, all the neurons oscillate with almost the same period, and the memory
is represented in the relative phase differences of oscillators, so the neurons can store
analog-valued patterns. This model has an advantage in that the usual techniques for
theoretical analysis of associative memory [120, 121] are applicable.

On the other hand, neural networks composed of spiking neurons also show the prop-
erties of associative memory [115, 116, 117]. In those systems, the following models are
often used as spiking neurons: the Hodgkin-Huxley model, which describes the dynamics
of squid giant axons; the FitzHugh-Nagumo model, which is the reduced model of the
Hodgkin-Huxley model; and the leaky integrate-and-fire model, which has an internal
state described by a linear differential equation and a spiking mechanism with a thresh-
old. The couplings among those neurons are accompanied with time delays which models
the time lag from the presynaptic neuron to the postsynaptic neuron, and the memory
is represented in the spatio-temporal firing pattern of the neurons.

Meanwhile, as shown in Chap. 1, the physiological environment where neurons op-
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erate has several sources of fluctuations, thus their effects on the information processing
may not be neglected. In this chapter, based on Ref. [118], the associative memory in the
network of chemically coupled FitzHugh-Nagumo models with fluctuations is treated, and
SR-like effects in this system are considered. In Sec. 7.2, a coupled FitzHugh-Nagumo
model and some quantities are defined. The couplings are mediated by chemical synapses.
In Sec. 7.3, the results of numerical simulations are presented. We consider memory re-
trieval after adding fluctuations into the system and examine its dependence on the
fluctuation intensity. We observe an SR-like phenomenon. The basin of the attraction
and the storage capacity of the system are also investigated numerically. In Sec. 7.4,
theoretical analyses for the fluctuation-induced memory retrieval are presented. In Sec.
7.5, the simultaneous retrieval of two patterns is observed as the alternate firings of the
particular neurons. Results and discussions are given in the final section.

7.2 Associative Memory Composed of Spiking Neu-

rons

In the following, as a model of associative memory, we treat a chemically coupled
FitzHugh-Nagumo (FN) model written as

�
dui

dt
= � vi + ui �

u3
i

3
+ Si (t) + � i (t) +

NX

j =1

Jij

X

k2 � (i;j )

� (t � tk
j � dp); (7.1)

dvi

dt
= ui � � vi +  ; (7.2)

� (t) = gpeak
t
t0

exp
�

1 �
t
t0

�

; (7.3)

h� i (t)� j (t0)i = D� ij � (t � t0); (7.4)

� (i; j ) � f kjt f
i (t) � dp < tk

j < t � dpg; (7.5)

where � = 0:8,  = 0:7, � = 0:1, Si (t) is the external input, � i (t) is Gaussian white noise,
tk
j is the k-th firing time of the j -th neuron, the firing time is defined as the time when

ui(t) exceeds an arbitrary threshold � , t f
i (t) is the latest firing time of the i -th neuron

at time t, dp is the uniform time delay, and � (t) is the alpha function with height gpeak.
The parameters are fixed at dp = 3, � = 0, and gpeak = 0:45 in the following.

Let us make the above N neurons store p random patterns � �
i (i = 1; 2; � � � ; N ,

� = 1; 2; � � � ; p), generated according to the probability density function

P(� �
i ) = (1 � a)� (� �

i ) + a� (� �
i � 1); (7.6)

where � (x) denotes the delta function and a (0 � a � 1) is the average of � �
i . Following

Yoshioka and Shiino [117], the connection coefficients J ij are defined as

Jij =
1

N a(1 � a)

pX

� =1

� �
i (� �

j � a): (7.7)
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Note that the matrix J ij /
P

� � �
i (� �

j � a) is used instead of the usual J ij /
P

� (� �
i �

a)(� �
j � a) so as not to give negative inputs to the neurons which store 0’s, because the

FN neuron can fire even with the negative input due to the rebound effect [125, 126,127].
The external input Si (t) is defined as

Si (t) = x i U0U(t) (x i 2 f 0; 1g); (7.8)

�

(
x i U0 if t � 0
0 otherwise

; (7.9)

where U(t) is a step function, x i is the binary factor which determines whether the
input is injected to the i -th neuron or not, and U0 is the intensity of the input. In
the following, U0 is fixed at U0 = 0:1, which is so small that each neuron cannot fire
without the fluctuation � i (t). Using the binary factor x i , the input overlap m �

in , which
measures the correlation between the pattern � � = (� �

1 ; � �
2 ; � � � ; � �

N ) and the external input
S(t) = (S1(t); S2(t); � � � ; SN (t)), is defined as

m�
in =

1

N a(1 � a)

NX

i =1

(� �
i � a)(x i � a): (7.10)

7.3 Fluctuation-induced Memory Retrieval

Following the above configurations, numerical simulations are carried out for N = 200,
p = 3, and a = 0:5. Without loss of generality, the pattern � 1 can be defined as

� 1
i =

(
1 1 � i � 100
0 otherwise

; (7.11)

and the patterns � 2 and � 3 are determined randomly following the probability density
function (7.6). The external input is derived by determining the binary factors x i ran-
domly so that the input overlap m1

in with the pattern � 1 takes 0:5. To measure the
correlation between the pattern � � and the time series u i (t) (i = 1; 2; � � � ; N ), u i (t) is
transformed into the binary series yi (t) 2 f 0; 1g written as

yi (t) =

(
1 if t < t f

i (t) + ∆d

0 otherwise
; (7.12)

where the parameter ∆d is set close to the characteristic width of the output pulse, and
∆d = 4 is used in the following. Then the output overlap m �

out between the pattern � �

and the binary series y = (y1(t); y2(t); � � � ; yN (t)) is defined as

m�
out =

1

N a(1 � a)

NX

i =1

(� �
i � a)(yi � a): (7.13)

At the time t = 0, the variables u i and vi are set around the equilibrium, namely,
ui ' � 1:2 and vi ' � 0:63. The firing times of all the neurons for the fluctuation intensity
D = 0:001 are shown in Fig. 7.1(a), and it is observed that all the neurons are firing

71



mout
1

(b)

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

(a)

0

50

100

150

200

0 20 40 60 80 100
t

t

in
de

x 
of

 n
eu

ro
n

Figure 7.1 The result of a numerical simulation, (a) the �ring
times of all the neuronsand (b) the output overlap m1

out with the
pattern ξ1, for N = 200, p = 3, a = 0.5, and D = 0.001. All the
neurons are �ring randomly, thus the retrieval of the pattern ξ 1

fails.

randomly. The output overlap m1
out with the pattern � 1 obtained from the time series in

Fig. 7.1(a) is shown in Fig. 7.1(b). It is observed that m1
out fluctuates around 0, thus it

can be concluded that the retrieval of the pattern � 1 fails.
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Figure 7.2 The result of a numerical simulation, (a) the �ring
times of all the neuronsand (b) the output overlap m1

out with the
pattern ξ1, for N = 200, p = 3, a = 0.5, and D = 0.0015. The
retrieval of the pattern ξ1 is successful.

The firing times of all the neurons for D = 0:0015 are shown in Fig. 7.2(a). It is
observed that all the neurons seem to fire randomly at small t, but at t ' 40 the neurons
which store 1’s for the pattern � 1 start to fire periodically and synchronously. And in
Fig. 7.2(b), the output overlap m1

out increases to about 0.9 at t ' 40, so in this case the
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Figure 7.3 The result of a numerical simulation, (a) the �ring
times of all the neurons and (b) the output overlap m1

out with
the pattern ξ1, for N = 200,p = 3, a = 0.5, and D = 0.004. The
neuronswhich store0's for the pattern ξ1 �re with high �ring rates
due to the large uctuation intensity, thus the output overlap is
lower than the caseof D = 0.0015.

retrieval of the pattern � 1 is successful.

The result of a simulation for D = 0:004 are shown in Fig. 7.3. The periodic and
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synchronous firings are observed again, but the neurons which store 0’s for the pattern � 1

fire with high firing rates due to the large fluctuation intensity, thus the output overlap
is lower than the case of D = 0:0015.

In Fig. 7.4, the output overlap m1
out at a sufficiently large t is plotted against the

fluctuation intensity D for the input overlap m1
in = 0.8, 0.6, and 0.05. The other param-

 0.8
 0.6
0.05

D

mout
1

0

0.2

0.4

0.6

0.8

1

0 0.001 0.002 0.003 0.004

Figure 7.4 The output overlap m1
out against the uctuation in-

tensity D for m1
in = 0.8, 0.6, and 0.05 with N = 200, p = 3, and

a = 0.5. Stochastic resonance-like phenomenon is observed for
m1

in = 0.8 and 0.6.

eters are identical with the previous cases. For m1
in = 0:8 and 0:6, the output overlap

m1
out increases with the increase of the fluctuation intensity D , and it decreases with the

increase of D over the optimal intensity D 0 ' 0:0011. This phenomenon is similar to
so-called stochastic resonance, where a weak input signal is enhanced by its background
fluctuation and observed in many nonlinear systems [67, 68, 69, 70]. For m 1

in = 0:05, the
retrieval of the pattern � 1 fails for any value of D .

For the fixed fluctuation intensity D = 0:0015, the numerically obtained basin of
attraction is shown as a function of the loading rate � = p=N in Fig. 7.5. For each
loading rate � , two points are plotted, namely, the upper is the equilibrium value of the
output overlap m1

out , and the lower is the minimum input overlap m 1
in which gives the

successful memory-retrieval. For � < 0:04, the standard deviations shown by the error
bars are relatively small, but for � � 0:04, they take larger values, that is, the memory-
retrieval states are destabilized. Thus it can be concluded that the storage capacity � c

is about 0.04. For further discussions, theoretical analyses of the associative memory
[120, 121] are required.
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Figure 7.5 The basin of attraction for N = 200, D = 0.0015,
and a = 0.5. The error bar denotesthe standard deviation for ten
samples.The storagecapacity is estimated to be about 0.04.

7.4 Theoretical Analysis of Fluctuation-induced Mem-

ory Retrieval

In this section, we give a qualitative explanation for the fluctuation-induced memory
retrieval. In the following, the system with p = 1 is considered for simplicity. Let us
define the set of indices of neurons which store 0’s in the pattern � � = (� �

1 ; � �
2 ; � � � ; � �

N ) as
G� (0), and the set of indices of neurons which store 1’s in the pattern � � as G� (1). The
input K i injected into the i -th neuron is written as

K i = � i for i 2 G1(0); (7.14)

K i =
1

N a(1 � a)

NX

j =1

(� 1
j � a)� j (t) + U0 + � i ; (7.15)

=
1

N a(1 � a)

0

@
X

j 2 G1(0)

(� 1
j � a)� j (t) +

X

j 2 G1 (1)

(� 1
j � a)� j (t)

1

A

+U0 + � i ; (7.16)

= �
1

N (1 � a)

X

j 2 G1(0)

� j (t) +
1

N a

X

j 2 G1 (1)

� j (t) + U0 + � i ; (7.17)

= �h � j (t)i j 2 G1(0) + h� j (t)i j 2 G1 (1) + U0 + � i for i 2 G1(1); (7.18)
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� j (t) �
X

k2 � (i;j )

� (t � tk
j � dp); (7.19)

� (i; j ) = f kjt f
i (t) � dp < tk

j < t � dpg; (7.20)

where h�ij 2 A denotes the ensemble average over the set A. Note that the external in-
put S(t) is injected only to the neurons in G1(1) for simplicity. Because fluctuations
for different neurons are statistically independent, the neurons in G1(0) fire randomly
and independently. On the other hand, the neurons in G1(1) have the common input
h� j (t)i j 2 G1 (1) , thus their firings may be correlative with each other. In the following, we
treat this dynamics. To omit the dependence of K i on the index i in the identical set
G(�), the set � (i; j ) is substituted with

� (j ) � f kjtk
j < t � dpg; (7.21)

for simplicity.
Let us consider an ensemble of N neurons with the uniform coupling term h� j (t)i 1� j � N

and the external input U0+� i , namely, eqs. (7.1) and (7.2) with J ij = 1=N and Si (t) = U0.
Note that this model approximates the dynamics of neurons in G1(1), and that the term
h� j (t)i j 2 G1 (0) in eq. (7.18) is neglected for simplicity. Then let us consider the num-
ber of neurons which fire in the narrow time interval [t; t + ∆w] and denote it by N zn .
The perturbation with height ' gpeakzn caused by those firings is injected to all the
neurons after the delay dp. Let us denote the number of neurons which fire with this
perturbation in the time interval [t + dp; t + dp +∆w] by N zn+1 , and assume the relation
zn+1 = g(zn). If the FN neuron acts like a threshold device with the threshold � , g(zn)
for the fluctuation intensity D = 0 is a step function which takes 1 for gpeakzn + U0 � �
and takes 0 otherwise. It is difficult to derive g(zn) for D 6= 0, but it is expected to be a
monotonically increasing function of zn .

The numerical derivation of g(zn) is performed as follows. First, sufficiently strong
pulses are injected to some neurons. The number of neurons, which fire with the effect
of the input pulses and fluctuations, gives the value of zn . By preparing a variety of
input pulses, we can generate a set of zn ’s. The value of zn+1 = g(zn) is determined
from the number of neurons which fire after the delay dp. Numerically obtained g(zn) for
D = 0:0005, 0:0011, and 0:0012 with N = 200 and U0 = 0:1 is plotted in Fig. 7.6. The
width ∆w of the time interval is set at the same size as the width ∆d of the output pulse.
It is observed that the number of intersecting points of y = g(z) with y = z is three for
D < D0 ' 0:0011 and one for D > D0, the intersecting point z ' 1 is always stable for
any D , and the other intersecting points are generated by a saddle-node bifurcation at
D = D0. A schematic diagram is shown in Fig. 7.7.

Because all the neurons are set around the equilibrium at the time t = 0, the initial
value of zn is z0 ' 0. Thus, for D < D0, the system are stable at z ' 0 and almost all the
neurons are quiescent. On the other hand, for D > D 0, any zn converges to the stable
fixed point z ' 1, which means that all the neurons fire synchronously and periodically
with the period dp. In other words, the target pattern is retrieved for D > D 0.

Next, let us consider the dependence of m out on D is investigated for D > D0.
Assume that the neurons in G1(1) fire synchronously and periodically with the period
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Figure 7.6 Numerically obtained g(zn) for D=0.0005, 0.0011,
and 0.0012with N = 200and U0 = 0.1. A saddle-node bifurcation
at D ' 0.0011is observed.
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Figure 7.7 A schematic diagram of bifurcation of g(z).

dp and that the neurons in G1(0) are firing randomly with the firing rate depending on
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D as rG0 = r0 exp(� B=D), where r 0 and B are constants. Note that this firing rate is
the inverse of the first passage time for a particle in a double-well potential to cross the
potential barrier [34], and is introduced only for simplicity.

The distribution of the ratio k of the neurons in G0(0) which fire in a time interval
of width ∆w and its average hki are written as

P(k) = N (1� a)CN (1� a)k(1 � exp(� r G0∆w))N (1� a)k(exp(� r G0∆w))N (1� a)(1 � k) ;(7.22)

hki = 1 � exp(� rG0∆w): (7.23)

With hki , mout is approximately given by

m1
out =

1

N a(1 � a)

X

i

(� 1
i � a)(yi � a); (7.24)

=
1

N a(1 � a)
[(1 � a)(1 � a)N a + (� a)(1 � a)N (1 � a)hki

+(� a)(� a)N (1 � a)(1 � hki )]; (7.25)

= exp
�

� r 0∆w exp
�

�
B
D

��

: (7.26)

Note that eq. (7.26) decreases monotonically with the increase of D . This gives the
quantitative description of the decrease of mout for D � D0.

7.5 Alternate Retrieval of Two Patterns

In our network, the memory is represented by the synchronized periodic firings of the
neurons which store 1’s, and this period is determined by the time delay dp. Thus the
system has a large degree of freedom along the time axis for the large dp, that is, during
the time between the firings by one pattern, the system can retrieve other patterns, in
other words, this system can process some “tasks” simultaneously.

To see this ability, numerical simulations are performed for N = 200, p = 3, a = 0:5,
and dp = 6:5. Note that the time delay dp is about twice as long as dp = 3 used in the
above sections. For simplicity, the patterns � 1 and � 2 are defined as

� 1
i =

(
1 1 � i � 100
0 otherwise

; (7.27)

� 2
i =

(
1 51 � i � 150
0 otherwise

; (7.28)

respectively, and the pattern � 3 is determined randomly following the probability density
function (7.6). The external input S(t) is defined thus that the binary factor x i satisfies,

x i =

(
1 51 � i � 100
0 otherwise

: (7.29)

Note that both input overlaps m1
out and m2

out take 0.5.
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Figure 7.8 The result of a numerical simulation, (a) the �ring
times and (b) the output overlaps, for N = 200, p = 3, a = 0.5,
D = 0.0009,and dp = 6.5. The retrievals of both patterns ξ 1 and
ξ2 fail.

For the fluctuation intensity D = 0:0009, the firing times of all the neurons and the
output overlaps m1

out and m2
out are plotted in Figs. 7.8(a) and 7.8(b), respectively. It is

observed that the retrievals of both patterns � 1 and � 2 fail with this fluctuation intensity.
The firing times of all the neurons for the fluctuation intensity D = 0:0015 are plotted
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in Fig. 7.9(a). It is shown that the two patterns � 1 and � 2 are retrieved alternatively,
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Figure 7.9 The result of a numerical simulation, (a) the �ring
times and (b) the output overlaps, for N = 200, p = 3, a = 0.5,
D = 0.0015,and dp = 6.5. The alternate retrieval of two patterns
is observed as the anti-phase oscillations of two output overlaps.

accompanied by the time difference dp=2. The output overlaps m1
out and m2

out derived
from the data in Fig. 7.9(a) are shown in Fig. 7.9(b). The alternate retrieval of two
patterns is observed as the antiphase oscillations of two output overlaps.
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The result of a numerical simulation for D = 0:004 is shown in Fig. 7.10. In Fig.
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Figure 7.10 The result of a numerical simulation, (a) the �ring
times and (b) the output overlaps, for N = 200, p = 3, a = 0.5,
D = 0.004, and dp = 6.5. All the neurons are �ring with high
�ring rates, thus the retrievals of both patterns ξ 1 and ξ2 fail.

7.10(a), it is observed that all the neurons are firing with high firing rates, thus the
retrievals of both patterns � 1 and � 2 fail as in Fig. 7.10(b).
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From above results, it can be concluded that our system has an ability to retrieve two
patterns simultaneously as the alternate firings of particular neurons, and the fluctuation
intensity D plays a significant role to realize this dynamics.

7.6 Results and Discussions

The associative memory in a pulsed neural network composed of the chemically coupled
FitzHugh-Nagumo models with a time delay is investigated. In this network, the memory
is represented by the synchronous periodic firings of the particular neurons. It is found
that the memory retrieval in this system is achieved by adding fluctuations, and there
exists an optimal fluctuation intensity for memory retrieval. This phenomenon is similar
to so-called stochastic resonance (SR), where the weak input signal is enhanced by its
background fluctuations. Though there is no time-dependent input in our model, the
mechanism of associative memory is driven and enhanced by its background fluctuation.
The basin of attraction of this system is investigated numerically, and its storage capacity
is found to be � c ' 0:04. This storage capacity is smaller than � c = 0:138 for the Hopfield
model [123], and comparable to � c = 0:038 for the coupled phase oscillators [124]. It is
found that our network has an ability that the previous models do not have, that is, an
ability to retrieve two patterns as the alternate firings of the particular neurons. While
such dynamics utilizing the degree of freedom along the time axis is proposed by Wang
et al. for the network of bursting neurons [119], our model has the properties that the
component of memory is the single pulse of each neuron, and that fluctuations in the
system is indispensable.

As for the fluctuations in the neural system, SR in a single neuron is often investi-
gated, and it is proposed that the sensory system may utilize SR in order to improve
the sensitivity to the external input. Our results show that fluctuations can play a more
functional role in higher order dynamics in the brain, such as the memory retrieval in the
associative memory. Collins et al. propose that regulation of the fluctuation intensity is
not required for a network of large numbers of neurons [89]. In our dynamics, however,
regulation of the fluctuation intensity is required for optimal intensity (see Fig. 7.4).

It might be difficult to control the thermal fluctuations, but, if the sum of enormous
presynaptic inputs act as fluctuations, it might be natural to control their intensities. It
is known that stochastic resonance also takes place by fluctuation-like presynaptic inputs
[83, 84, 85, 86]. In such a case, the dynamics of the system might be controlled by its
background fluctuation [92, 93, 94].
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Chapter 8

Net works Storing Sparse Patterns
with Hierarc hical Correlations

8.1 Introduction

Recently, the sparsely encoded associative memory is extensively investigated by enor-
mous researchers. The coding of the memory is called “sparse” when the number of
excited neurons is much smaller than that of quiescent ones, in other words, the firing
rate of the network is small. It is known that the storage capacity for sparse patterns
diverges as the firing rate of the pattern approaches 0. The existence of the sparsely
encoded associative memory in the brain is discussed in physiological experiments (for a
review, see Ref. [129]).

On the other hand, it is known that the mixed states of the stored patterns, which are
nonlinear superpositions of stored patterns, also become equilibria of the network. The
typical mixed states are the OR patterns, the AND patterns, and the majority decision
mixed states [131]. In Ref. [130], the dynamics of the network storing memory patterns
with hierarchical correlations are analyzed, and the mixed states of stored patterns are
considered. Such mixed states may be interpreted as unnecessary patterns which ac-
company with stored patterns, but some researchers relate the stabilization of mixed
states of stored patterns with a “concept formation” [128] and discuss the validity of this
relation in the physiological experiments [131, 132].

In this chapter, we consider the sparsely encoded associative memory in the coupled
FitzHugh-Nagumo models and the effect of fluctuations in the system. In Sec. 8.2,
sparse patterns with hierarchical correlations are defined. In Sec. 8.3, the six patterns
stored in the network are defined. In Sec. 8.4, the results of numerical simulations are
presented. It is shown that the target pattern and the OR pattern which is one of the
mixed patterns are retrieved individually by controlling the fluctuation intensity. In Secs.
8.5 and 8.6, theoretical analyses are presented. Results and discussions are given in the
final section.
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8.2 Patterns with Hierarchical Correlations

In the following, a network of the FN neurons which stores sparse patterns with firing
rate a � 0:5, namely, the system governed by eqs. (7.1), (7.2), and (7.7) for a � 0:5
is treated. The sparsely encoded associative memory in a network of Hodgkin-Huxley
models is investigated in Ref. [133] and the high storage capacity is observed. In our
model, the memory patterns stored in the network are defined as follows. First, pattern
vectors � � = (� �

1 ; � �
2 ; � � � ; � �

N ) (� = 1; 2; � � � ; p) are randomly generated according to the
probability density (7.6). By applying the bit transformation to � �

i , p1 groups of patterns
composed of p2 patterns with overlap bare obtained. Note that the relationship p = p1p2

holds and the overlap between the patterns � and � is defined as

m(� ; � ) �
1

N a(1 � a)

NX

i =1

(� i � a)(� i � a): (8.1)

Let us denote the j -th pattern in the i -th group as � (i;j ) . The overlap between
two patterns which belong to different groups takes zero, namely, the patterns have
hierarchical correlations [130] characterized by

m(� (i;j ) ; � (k;l )) = (b+ (1 � b)� j l)� ik ; (8.2)

(1 � i; k � p1; 1 � j; l � p2):

The connection coefficients J ij are defined as

Jij =
1

N a(1 � a)

p1X

k=1

p2X

l=1

� (k;l )
i (� (k;l )

j � a): (8.3)

The OR pattern vector � OR(k) = (� OR(k)
1 ; � OR(k)

2 ; � � � ; � OR(k)
N ) of the k-th group is de-

fined as

� OR(k)
i = U

 p2X

l=1

� (k;l )
i

!

; (8.4)

U(x) =

(
1 if x > 0
0 otherwise

: (8.5)

Generally, the mixed states of stored patterns in the k-th group is defined as

� mix (k)
i = U

 p2X

l=1

� (k;l )
i � �

!

; (8.6)

where � is an arbitrary threshold [131]. Note that p2 mixed states are defined by changing
� . It is known that the mixed states of the stored patterns are also memorized in the
network. The storage capacity of the OR patterns diverges in the sparse limit a ! 0, and
the storage capacities of other mixed states converge to 0 in the limit a ! 0. Thus the
OR patterns are “typical” mixed states in the sparse limit. In the following we consider
only the OR patterns as the mixes states of stored patterns.

85



The overlap between the state of the network and the pattern � is defined as

mout =
1

N f (1 � f )

NX

i =1

(yi � f )(� i � f ); (8.7)

f =
1

N

NX

i =1

� i ; (8.8)

where yi is the binary series which depends on the state of the network defined by eq.
(7.12).

In the following sections, we demonstrate that the target pattern � (1;1) and the OR
pattern � OR(1) of the first group can be retrieved individually by controlling the fluctua-
tion intensity D .

8.3 Definition of Six Pattern Vectors

In the following, only the case with a = 0:1, p1 = 2, and p2 = 3 is considered for
simplicity. A schematic diagram of six patterns � (k;l ) (k = 1; 2, l = 1; 2; 3) is shown in

b
overlap

z(1,1) z(1,2) z(1,3) z(2,1) z(2,2) z(2,3)

zOR(1) zOR(2)

zOR

Figure 8.1 A schematic diagram of six pattern vectors.

Fig. 8.1. First, let us denote the set of indices of neurons which store 1’s in the pattern
� (k;l ) by

G(k; l) = f i j� (k;l )
i = 1; 1 � i � N g: (8.9)

The sets G(1; l) in the space of neuron indices are shown in Fig. 8.2. Note that the
number of elements of the set G(k; l) is

#G(k; l) =
NX

i =1

� (k;l )
i = N a: (8.10)
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G(1,1)

G(1,2) G(1,3)

Figure 8.2 The setsG(1, l) in the spaceof neuron indices.

Because the overlap between the patterns � (k;l 1) and � (k;l 2) (l1 6= l2) is b, the number of
elements of the intersection of G(k; l 1) and G(k; l2) is calculated to be

# (G(k; l1) \ G(k; l2)) =
NX

i =1

� (k;l 1)
i � (k;l 2)

i ; (8.11)

= N a(a + b� ab) (l 1 6= l2): (8.12)

Though the number of elements of the set G(k; 1) \ G(k; 2) \ G(k; 3) is not determined
by the parameters a and b, we assume that the probability that the element of G(k; 1) \
G(k; 2) belongs to G(k; 1) \ G(k; 2) \ G(k; 3) is identical with the probability that the
element of G(k; 1) belongs to G(k; 3). Under such an assumption, the number of elements
of the set G(k; 1) \ G(k; 2) \ G(k; 3) is calculated to be

# (G(k; 1) \ G(k; 2) \ G(k; 3)) = N a(a + b� ab)2: (8.13)

Thus the number of elements of the joint set of G(1; 1), G(1; 2), and G(1; 3) is N a[3 �
3(a + b� ab) + (a + b� ab)2], and we denote it as Nall in the following.

Without loss of generality, the pattern � (1;1) can be defined as

� (1;1)
i =

(
1 1 � i � N a = 24
0 otherwise

; (8.14)

and � (1;2) and � (1;3) are defined so that the OR pattern � OR(1) of the first group satisfies

� OR(1)
i =

(
1 1 � i � Nall = 62
0 otherwise

: (8.15)

The patterns � (2;l ) (l = 1; 2; 3) are determined randomly so that they satisfy eq. (8.2).
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8.4 Fluctuation-induced Pattern Selection
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Figure 8.3 The result of a numerical simulation, (a) the �ring
times of all the neuronsand (b) the overlapsm(1;1) and mOR(1) for
N = 240, b = 0.07, and D = 0.001. The retrieval of the pattern
ζ(1;1) is successful.

Under the above configurations, numerical simulations are performed for N = 240,
a = 0:1, b = 0:07, m(1;1)

in = 0:6, and gpeak = 0:5. At the time t = 0, the variables u i and
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vi are set around the equilibrium, namely, u i ' � 1:2 and vi ' � 0:63.
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Figure 8.4 The result of a numerical simulation, (a) the �ring
times of all the neurons and (b) the overlaps m(1;1) and mOR(1)

for N = 240, b = 0.07, and D = 0.0017. The retrieval of the OR
pattern ζOR(1) is successful.

The firing times of all the neurons for the fluctuation intensity D = 0:001 are shown
in Fig. 8.3(a). It is observed that the neurons which store 1’s in the pattern � (1;1) start
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to fire periodically at t ' 50. Let us denote the overlap between the state of the network
and the pattern � (1;1) as m(1;1), and the overlap between the state of the network and the
OR pattern � OR(1) of the first group as mOR(1) . The time series of overlaps m (1;1) and
mOR(1) are shown in Fig. 8.3(b). The overlap m(1;1) reaches almost 1 at t ' 50, thus the
retrieval of pattern � (1;1) is successful.

The result of a numerical simulation for D = 0:017 is shown in Fig. 8.4. At small t,
the pattern � (1;1) is retrieved, but at t ' 80, it is observed that mOR(1) exceeds m(1;1),
thus in this case the OR pattern � OR(1) is successfully retrieved.

From the above results, it can be concluded that the target pattern is retrieved for the
small fluctuation intensity, and the OR pattern is retrieved for the moderate fluctuation
intensity.
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mOR(1)

m

D

Figure 8.5 The asymptotic values of the overlaps m (1;1) and
mOR(1) as a function of the uctuation intensity D for N = 240
and b = 0.07. Each overlap is numerically obtained by averaging
the value over 150� t � 200.

In Fig. 8.5, the asymptotic values of overlaps m (1;1) and mOR(1) are plotted against
the fluctuation intensity D . It is observed that the overlap m (1;1) takes a maximum at
D ' 0:001, and the overlap mOR(1) takes a maximum at D ' 0:0017. Thus it can be
concluded that the target pattern and the OR pattern can be retrieved individually by
controlling the fluctuation intensity. In other words, a pattern selection is induced by
the fluctuations in the system.

The asymptotic values of the overlaps as a function of the fluctuation intensity D for
b= 0 and 0.1 are shown in Figs. 8.6 (a) and (b), respectively. For b = 0, it is observed
that only the target pattern � (1;1) is successfully retrieved, and for b= 0:1, it is observed
that only the OR pattern � OR(1) is successfully retrieved. Thus it is concluded that the
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Figure 8.6 The asymptotic values of the overlaps m (1;1) and
mOR(1) as a function of the uctuation intensity D for (a) b =
0 and (b) b = 0.1 with N = 240. Each overlap is numerically
obtained by averaging its value over 150� t � 200. (a) Only the
target pattern is successfullyretrieved. (b) Only the OR pattern
is successfullyretrieved.

overlap b between the patterns in the identical group is important to retrieve both the
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target pattern and the OR pattern.
As shown in Figs. 8.3 and 8.4, there is a characteristic time required for the retrieval

of patterns. Let us define the periods to retrieve the patterns � (1;1) and � OR(1) as T (1;1) and
TOR(1) , respectively. The dependences of T (1;1) and TOR(1) on the fluctuation intensity
D for b = 0:07 are shown in Fig. 8.7. It is observed that T (1;1) and TOR(1) diverge at

0
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0.001 0.00125 0.0015 0.00175 0.002

T

D

T (1,1)

T OR(1)

Figure 8.7 The dependencesof T (1;1) and T OR(1) on the uctu-
ation intensity D for b = 0.07. The data are obtained by taking
the mean values of 100 � 200 samples. The number of samples
depends on the uctuation intensity D.

D = 0:0009 and 0:0013, respectively. It is because the retrieval of patterns is realized by
saddle-node bifurcations with the parameter D . This dynamics is treated in the following
sections.

8.5 Theoretical Analysis of Fluctuation-induced Pat-

tern Selection (1)

In this section, we give a qualitative explanation for the fluctuation-induced pattern
selection. In the following, the system with p1 = 1 and p2 = 3, namely, a network which
stores three patterns � (1;l ) (l = 1; 2; 3) with overlap b is considered for simplicity. The
external input is injected only to the neurons in the set G(1; 1). In the following, we
treat only the dynamics of the neurons in the set G(1; 1) [ G(1; 2) [ G(1; 3) for simplicity.

Let us consider the number of neurons which fire in the narrow time interval [t; t+∆ w]
and denote it by N azn . The perturbation caused by those firings is injected to the
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particular neurons after the delay dp. Let us denote the number of neurons which fire
with this perturbation in the time interval [t + dp; t + dp + ∆w] by N azn+1 , and assume
the relation zn+1 = g(zn).

Numerical derivation of g(zn) is performed as follows. Note that the simplified dy-
namics introduced in Appendix B is used to obtain g(zn). First, sufficiently strong pulses
are injected to some neurons. The number of neurons, which fire with the effect of the
input pulses and fluctuations, gives the value of zn . By preparing a variety of input
pulses, we can generate a set of zn ’s. The value of zn+1 = g(zn) is determined from
the number of neurons which fire after the delay dp. Numerically obtained g(zn) for
D = 0:0005, 0:001, and 0:0017 with N a = 100 and U0 = 0:1 is shown in Fig. 8.8. The
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Figure 8.8 The relationship between zn and zn+1 for b = 0.07.
The data are obtained by taking the mean value of 50 samples.

intersecting points of g(zn) with a line zn+1 = zn are the fixed points, and they are stable
if the differential coefficient of g(zn) at the fixed point is smaller than 1, and otherwise
they are unstable. It is shown that there are three stable fixed points at z ' 0; 1, and
2:6 for D = 0:0005. Because all the neurons are set around the equilibrium at the time
t = 0, the initial value of zn is z0 ' 0. Thus the system are stable at z ' 0 and almost
all the neurons are quiescent.

At D = 0:001, a pair of stable and unstable fixed points at z ' 0 disappears by a
saddle-node bifurcation, and the system reaches the stable fixed point at z ' 1, namely,
the pattern � (1;1) is retrieved.

At a point between D = 0:001 and 0:0017, a pair of stable and unstable fixed points at
z ' 1 also disappears, and the system reaches the stable fixed point at z = Nall =N a ' 2:6,
namely, the pattern � OR(1) is retrieved.
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The retrievals of the pattern � (1;1) and the OR pattern � OR(1) are realized by such
dynamics. This analysis is similar to the theoretical analysis of the propagation of
synchronized spikes in the feedforward synfire chain [134].
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Figure 8.9 The relationship between zn and zn+1 for (a) b = 0
and (b) b = 0.1. The data are obtained by taking the mean value
of 50 samples.
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The numerically obtained g(zn) for b= 0 and 0:1 are shown in Figs. 8.9 (a) and (b),
respectively. For b= 0, the stable fixed point at z ' 1 exists even for large D , thus the
OR pattern � OR(1) is not retrieved. For b = 0:1, the stable fixed points at z ' 0 and
1 disappear at almost the identical fluctuation intensity D ' 0:001, thus only the OR
pattern � OR(1) is retrieved.

8.6 Theoretical Analysis of Fluctuation-induced Pat-

tern Selection (2)

In the previous section, the fluctuation-induced pattern selection is analyzed with a one
dimensional map of the number zn of the neurons which fire in the narrow time interval.
In this section, an analysis based on a two dimensional map is presented.

As shown in Fig. 8.10, two variables zn and � n are defined as the number of the
firing neurons and the standard deviation of the firing times in the narrow time interval,
respectively. The width of the time interval is set at a value around the time delay of
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Figure 8.10 The de�nition of the two variables zn and σn . The
width of the time interval is set at a value around the time delay
of the network, namely, the period of the periodic �ring.

the network, namely, the period of the periodic firing. In the following, the discrete-
time dynamics of (� n ; zn) (n = 0; 1; 2 � � �) is considered. The numerical simulations are
performed for N a = 100, p1 = 1, and p2 = 3 for the simplified dynamics introduced in
Appendix B.
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Figure 8.11 The o wsin the (σ, z) plane for D = 0.0005. (a) The
numerically obtained o ws and (b) the schematic o ws deduced
from (a).

The numerically obtained flows in the (� ; z) plane for D = 0:0005 are shown in Fig.
8.11 (a). Note that the number zn of the firing neurons is normalized by the number of
the neurons which store 1’s in the pattern � (1;1) , namely, N a. Three attractors in the
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(� ; z) plane are observed. One is (0,0), and the rests are the attractors corresponding to
� (1;1) and � OR(1) . The reason why the attractor denoting � OR(1) is not a single node but a
line z ' 2:6 is given later. When the number of the initially firing neurons is sufficiently
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Figure 8.12 The o wsin the (σ, z) plane for D = 0.0012. (a) The
numerically obtained o ws and (b) the schematic o ws deduced
from (a).
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small, namely, z0 ' 0, it is observed that (� n ; zn) converges to (0,0). In other words, the
memory retrieval fails for z0 ' 0 with D = 0:0005 because almost all the neurons cannot
fire with this fluctuation intensity. Note that the system cannot cross the dotted curve
about zn ' 0:2 shown in Fig. 8.11 (a), which shows the boundary of the basins for the
attractors (0,0) and � (1;1) . This boundary seems to be the stable manifold of a saddle at
about (� ; z) = (0:4; 0:2) shown in Fig. 8.11 (b).

The numerically obtained flows in the (� ; z) plane for D = 0:0012 are shown in Fig.
8.12 (a). The attractor at about (0,0) disappears because of a saddle-node bifurcation,
thus the system initially put at (0,0) converges to the attractor at about (0.15,1), which
denotes the pattern � (1;1) .
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Figure 8.13 The numerically obtained o ws in the (σ, z) plane
for D = 0.002.

The numerically obtained flows in the (� ; z) plane for D = 0:002 are shown in Fig.
8.13. The attractor which denotes the pattern � (1;1) disappears because of a saddle-node
bifurcation again, thus the system initially put at (0,0) converges to the line at z ' 2:6
which denotes the pattern � OR(1) .

As previously noted, the pattern � OR(1) cannot denoted by a single node in the (� ; z)
plane, because all the neurons which store 1’s in � OR(1) cannot synchronize each other
as shown in Fig. 8.14. The step inputs are injected to the neurons which store 1’s in the
pattern � (1;1) , thus they fire slightly earlier than the other neurons.
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Figure 8.14 The �ring times of all the neurons in the system
for N = 240, b = 0.07, and D = 0.0017. It is observed that the
neurons in the range from 1 to 24 �re slightly earlier than the
other neurons.

8.7 Results and Discussions

The associative memory in a pulsed neural network storing sparse patterns with hierar-
chical correlations is investigated. The stored memory patterns composed of 0/1 digits
are represented by the synchronous periodic firings in the network. It is found that the
retrieval of the target pattern is achieved by adding fluctuations to the system. This
phenomenon is similar to so-called stochastic resonance, where a weak input signal is
enhanced by its background fluctuations. Besides the target pattern, the OR pattern
which is the nonlinear superposition of the three patterns which belong to the identical
group is also retrieved with the help of fluctuations and its optimal fluctuation intensity
is larger than that of the target pattern. Thus the target pattern and the OR pat-
tern are retrieved individually by controlling the fluctuation intensity, in other words,
a fluctuation-induced pattern selection takes place. Theoretical analyses of the above
results are also presented, and it is found that the fluctuation-induced pattern selec-
tion is realized by successive saddle-node bifurcations parameterized by the fluctuation
intensity.

The OR pattern may be interpreted as unnecessary patterns which accompany with
stored patterns, but some researchers relate the stabilization of mixed states of stored
patterns with a “concept formation” [128], and discuss the validity of this relation in the
physiological experiments [131, 132]. If the OR pattern is meaningful in the information
processing, the above results suggest that the fluctuations in the system might play
significant roles in the brain.
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Chapter 9

Conclusions and Discussions

9.1 Conclusions

Concerning the fluctuation which is observed in biological sensory systems and cortical
neuronal networks, the roles of fluctuations in pulsed neural networks are investigated.
As a model of a single neuron, the FitzHugh-Nagumo model is used, and two kinds
of couplings of neurons are considered, namely, the electrical coupling which is often
observed in sensory systems, and the chemical coupling which is widely seen in cortical
neuronal networks.

In Part II, the effects of fluctuations in the network of electrically coupled FitzHugh-
Nagumo models are investigated.

In Chap. 4, the network of electrically coupled FitzHugh-Nagumo models without
time delays is treated. The periodic pulse trains and Gaussian white noise are appended
to the network, and the dependence of the network on the fluctuation intensity is investi-
gated. In the single neuron model, it is observed that so-called stochastic resonance (SR)
takes place, that is, the correlation between the input and the output is maximized at an
optimal fluctuation intensity. In the coupled system, it is found that the optimal fluctu-
ation intensity increases with the increase of the coupling strength in the network, and
the asymptotic value of the optimal fluctuation intensity is proportional to the number
of neurons. We analyzed this dependence of the fluctuation intensity on the number of
neurons theoretically. Using this property, a network composed of thirty neurons, which
can separate a superimposed periodic pulse train by controlling the fluctuation intensity,
is constructed.

In Chap. 5, the system treated in Chap. 4 is treated again. It is observed that the
correlation between the input and the output takes a maximum as a function of not
only the fluctuation intensity but also the coupling strength. This phenomenon called
array-enhanced stochastic resonance (AESR) is analyzed theoretically. By transforming
the dynamics of N neurons into that of the mean dynamics X and the deviation � x(i ) , it
is found that AESR is caused by the term / � X 1(� x1)

2, particularly by the correlation
between (� x1)

2 and X 1. The character of the fluctuations of (� x1)
2 are also investigated,

and it is found that the deviation of the peak value Cpeak of the approximation from
that of the network of N neurons is caused by the asymmetry of the distribution of the
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fluctuations of (� x1)
2, and the correlation between the fluctuations of (� x1)

2 and the
mean dynamics X 1.

In Chap. 6, the network of electrically coupled FitzHugh-Nagumo models with a time
delay is treated. Similarly to the previous chapters, the periodic inputs and Gaussian
white noise are appended to the network. When the time delay dp and the frequency f
of the periodic input pulse train satisfy the relationship dp = 1=f , it is observed that an
optimal fluctuation intensity which maximizes the correlation coefficient increases with
the increase of the coupling strength, and the peak value of the correlation coefficient
decreases with the increase of the coupling strength. For the time delay dp = 1=f �
df dependent on the firing delay df , a deterministic firing is induced at the optimal
fluctuation intensity, which increases with the increase of the number of neurons. Using
these properties, a network composed of two assemblies is constructed. It separates a
superimposed periodic pulse train, and its dynamics can be controlled by fluctuations.
In this network, a rearrangement of the synchronously oscillating assembly by controlling
the fluctuation intensity is observed.

In Part III, the effects of fluctuations in the network of chemically coupled FitzHugh-
Nagumo models are investigated.

In Chap. 7, the associative memory in the network of chemically coupled FitzHugh-
Nagumo models with a time delay is treated. The stored patterns are composed of 0/1
digits, and represented by the synchronous periodic firings of the particular neurons in
the network. In this chapter, the case where the mean value of the stored patterns
is 0.5 is considered. It is found that the memory retrieval in this system is achieved
by adding fluctuations, and there exists an optimal fluctuation intensity for memory
retrieval. Though there is no time-dependent input in our model, the mechanism of
associative memory is driven and enhanced by its background fluctuation. The basin of
attraction of this system is investigated numerically, and its storage capacity is found
to be � c ' 0:04. By the analysis with a one dimensional map, it is found that the
fluctuation-induced memory retrieval is realized by a saddle-node bifurcation in this
map. It is also found that our network has an ability that the previous models do not
have, that is, an ability to retrieve two patterns as the alternate firings of the particular
neurons.

In Chap. 8, the network treated in Chap. 7 is treated again. The stored patterns
are sparse, namely, the mean value of the patterns is small, and they have hierarchical
correlations. As shown in Chap. 7, the retrieval of the target pattern is achieved by
adding fluctuations to the system. It is also found that the OR pattern which is the
nonlinear superposition of the three patterns which belong to the identical group is also
retrieved with the help of fluctuations and its optimal fluctuation intensity is larger than
that of the target pattern. Thus the target pattern and the OR pattern are retrieved
individually by controlling the fluctuation intensity, in other words, a fluctuation-induced
pattern selection takes place. Theoretical analyses of the above results are also presented,
and it is found that the fluctuation-induced pattern selection is realized by successive
saddle-node bifurcations parameterized by the fluctuation intensity.
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9.2 Discussions

In this thesis, a network with electrical couplings and a network with chemical couplings
are considered, and the effect of fluctuations is investigated. For both cases, it is found
that the fluctuations in the system can bring beneficial effects to the network. More-
over, they can play functional roles like parameters which control the dynamical state
of the network. For example, the superimposed periodic pulse train is separated into
the periodic components by controlling the fluctuation intensity in the network with
electrical couplings (Chaps. 4 and 6), and the target pattern and the OR pattern are
retrieved individually by controlling the fluctuation intensity in the network of chemical
couplings (Chap. 8). These results suggest that the fluctuations might be important in
the information processing in neural systems.

As shown in Chap. 1, there are several sources of fluctuations in the neural system,
such as, the fluctuations in the outer world, the stochasticity of the ion channels, the
synaptic unreliability, the fluctuations of the sum of presynaptic inputs, and chaos caused
by the nonlinearity of the neuron.

In the sensory system, which is modeled by the network with electrically couplings,
the fluctuations in the system might be caused mainly by the fluctuations in the outer
world and the stochasticity of the ion channels, thus it shall be difficult to control the
fluctuations in the system. However, with the mechanism of AESR, the correlation be-
tween the input and the output can be maximized by controlling the coupling strength of
the network for the fixed fluctuation intensity. Thus it is concluded that the maximiza-
tion of the correlation can be realized in the sensory system by controlling the coupling
strength.

In the cortical neural network, which is modeled by the network with chemical cou-
plings, the fluctuations in the system might be caused mainly by the synaptic unreliability
and the fluctuations of the sum of presynaptic inputs. As shown in Chap. 1, they can
be controlled by the release probabilities of chemical transmitters and the activities of
presynaptic neurons. Thus the fluctuation-induced memory retrieval and the pattern
selection might be realizable in the cortical neuronal networks.
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App endix A

Analytical Deriv ation of h(� x1)2i app2

In this appendix, we analytically derive the term h(� x 1)
2i app2 given by eq. (5.33), namely,

h(� x1)
2i app2 =

(1 � N � 1)D
2� (w � 1 + X 2

1 )
; (A.1)

from the stochastic differential equation

d
dt

� x1 = �
1

�
(w � 1 + X 2

1)� x1 �
1

�
� x2 +

1

�
�̃ ; (A.2)

d
dt

� x2 = � x1 � � � x2; (A.3)

h̃� (t)�̃ (t0)i = (1 � N � 1)D� (t � t0); (A.4)

where the suffix (i) which denotes the index of the neuron is omitted for simplicity.
With the vector x = (� x1; � x2)

t , eqs. (A.2) and (A.3) are written as

d
dt

x = A(t)x + f (t): (A.5)

Let us denote the solution of ẋ = A(t)x as x(t) = B (t)x(0) by the solution matrix B (t).
Then the solution of eq. (A.5) is written as

x(t) = B (t)x(0) + B (t)
Z t

0
dsB� 1(s)f(s): (A.6)

Note that the solution matrix B (t) rapidly converges to 0 as t ! 1 for sufficiently large
w.

With �̃ = 0, eq. (A.2) is solved to be

� x1(t) = � (t; 0)� x1(0) �
1

�

Z t

0
ds� (t; s)� x2(s); (A.7)

where

� (t; s) � exp
�

�
1

�
(w � 1)(t � s) �

1

�

Z t

s
dt0X 2

1(t0)
�

: (A.8)
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With the assumption that B (t) ! 0 as t ! 1 , the condition that � (t; 0) ! 0 as t ! 1
is required.

If the convergence of � (t; s) � � (t � s;0) to 0 as t � s ! 1 is sufficiently rapid,
� x2(s) in eq. (A.7) can be replaced by � x 2(t). With this assumption, eq. (A.7) becomes

� x1(t) ' � (t)� x1(0) �  (t)� x2(t); (A.9)

� (t) � � (t; 0); (A.10)

 (t) �
1

�

Z t

0
ds� (t; s): (A.11)

Substituting eq. (A.9) in eq. (A.3), we obtain

d
dt

� x2 = � (t)� x1(0) � ( (t) + � )� x2; (A.12)

and it is solved as

� x2(t) = exp
�

�
Z t

0
ds( (s) + � )

�

� x2(0) +
Z t

0
dsexp

�

�
Z t

s
dt0( (t0) + � )

�

� (s)� x1(0):

(A.13)
From eqs. (A.9) and (A.13), we obtain

B21(t) =
Z t

0
dsexp

�

�
Z t

s
dt0( (t0) + � )

�

� (s); (A.14)

B22(t) = exp
�

�
Z t

0
ds( (s) + � )

�

; (A.15)

B11(t) = � (t) �  (t)B 21(t); (A.16)

B12(t) = �  (t)B 22(t): (A.17)

With � x1(0) = 0, � x2(0) = 0, f(t) = (�̃ (t)=� ; 0)t , and eq. (A.6), we obtain

� x1(t) =
1

�

Z t

0
ds�̃ (s)

h
B11(t)B � 1

11(s) + B12(t)B � 1
21(s)

i
: (A.18)

The term in the brackets in eq. (A.18) is calculated to be

[� � �] = [B 11(t)B22(s) � B12(t)B21(s)]=[B11(s)B22(s) � B12(s)B21(s)]; (A.19)

=
� (t)B22(s) �  (t)[B 22(s)B21(t) � B22(t)B21(s)]

� (s)B22(s)
; (A.20)

= � (t; s) �  (t)
B21(t)B22(s) � B21(s)B22(t)

� (s)B22(s)
: (A.21)

With the assumption that the convergence of � (s) to 0 as s ! 1 is sufficiently rapid,
the lower bound s of the integration in eq. (A.14) can be replaced by 0, and we obtain

B21(t) ' B22(t)
Z t

0
ds� (s): (A.22)
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With eq. (A.22), the second term in eq. (A.21) is transformed into

 (t)B22(t)
� Z t

0
dt0� (t0) �

Z s

0
dt0� (t0)

�

=� (s) =  (t)B22(t)
Z t

s
dt0� (t0; s); (A.23)

thus we obtain

� x1(t) =
1

�

Z t

0
ds�̃ (s)� (t; s) �

1

�
 (t)B22(t)

Z t

0
ds�̃ (s)

Z t

s
dt0� (t0; s): (A.24)

Let us consider the order of the magnitude of the second term in eq. (A.24). With
the assumption that the convergence of � (t; s) to 0 as t � s ! 1 is sufficiently rapid,
Rt

s dt0� (t0; s) (s < t) and  (t) have constant magnitudes independently of t,
Rt

0 ds�̃ (s) �p
t, and B22(t) decreases exponentially with t, thus we obtain

� x1(t) '
1

�

Z t

0
ds�̃ (s)� (t; s): (A.25)

From eq. (A.25), the variance of � x 1(t) is written as

h� x1(t)2i '
D̃
� 2

Z t

0
ds� (t; s)2; (A.26)

=
D̃
� 2

Z t

0
dsexp

�

�
2

�
(w � 1)(t � s) �

2

�

Z t

s
dt0X 2

1 (t0)
�

; (A.27)

where D̃ � (1 � N � 1)D .
If (w � 1)=� is sufficiently large, by replacing X (t 0) by X (t), we obtain

h� x1(t)2i '
D̃
� 2

Z t

0
dsexp

�

�
2

�
(w � 1 + X 2

1(t))(t � s)
�

; (A.28)

=
D̃
�

1 � exp
�

�
2

�
(w � 1 + X 2

1(t))t
�

2(w � 1 + X 2
1(t))

; (A.29)

=
(1 � N � 1)D

2� (w � 1 + X 2
1)

; (A.30)

where t ! 1 is considered in order to obtain the final stationary form.
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App endix B

Dynamics of the Net work Storing
Three Patterns

In Chaps. 7 and 8, the networks of the FitzHugh-Nagumo neurons storing p random
patterns composed of 0/1 digits are treated. In such systems, for the network storing
a single pattern, the neurons are classified into two groups, namely, the neurons which
store 0’s in that pattern, and the neurons which store 1’s. Thus the neurons are classified
into 2p groups for the network storing p patterns. For example, in Sec. 7.4, the network
storing a single pattern is classified into two groups, namely, the sets G1(0) and G1(1).

Similarly, the network storing three patterns treated in Sec. 8.5 is classified into
23 = 8 groups of neurons. In this appendix, we introduce this classification and consider
the dynamics of each group.

Consider the network storing three patterns � (1;l ) (l = 1; 2; 3) and denote the set of
indices of neurons which store 1’s in the pattern � (1;l ) as G(1; l). As shown in Fig. B.1,

G(1,1)

G(1,2) G(1,3)

G(a)

G(b) G(c)

G(d)

G(e)

G(f)
G(g)

Figure B.1 The setsG(1, l) in the spaceof neuron indices.
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the sets G(1; l) (l = 1; 2; 3) are decomposed as

G(1; 1) = G(a) [ G(d) [ G(f ) [ G(g); (B.1)

G(1; 2) = G(b) [ G(d) [ G(e) [ G(g); (B.2)

G(1; 3) = G(c) [ G(e) [ G(f ) [ G(g); (B.3)

where

G(a) = G(1; 1) \ G(1; 2) \ G(1; 3); (B.4)

G(b) = G(1; 1) \ G(1; 2) \ G(1; 3); (B.5)

G(c) = G(1; 1) \ G(1; 2) \ G(1; 3); (B.6)

G(d) = G(1; 1) \ G(1; 2) \ G(1; 3); (B.7)

G(e) = G(1; 1) \ G(1; 2) \ G(1; 3); (B.8)

G(f ) = G(1; 1) \ G(1; 2) \ G(1; 3); (B.9)

G(g) = G(1; 1) \ G(1; 2) \ G(1; 3): (B.10)

We also define the set of indices of neurons which store 0’s for all the patterns as G(0),
namely, G(0) = G(1; 1) [ G(1; 2) [ G(1; 3). From the definitions (7.1) and (8.3), the
input K i injected into the i -th neuron is written as

K i = � i for i 2 G(0); (B.11)

K i = h� j (t)i j 2 G(1;1) � h� j (t)i j 2 G(1;1) + U0 + � i for i 2 G(a); (B.12)

K i =
X

l2f 1;2g

�
h� j (t)i j 2 G(1;l ) � h� j (t)i j 2 G(1;l )

�
+ U0 + � i for i 2 G(d); (B.13)

K i =
X

l2f 1;3g

�
h� j (t)i j 2 G(1;l ) � h� j (t)i j 2 G(1;l )

�
+ U0 + � i for i 2 G(f ); (B.14)

K i =
3X

l=1

�
h� j (t)i j 2 G(1;l ) � h� j (t)i j 2 G(1;l )

�
+ U0 + � i for i 2 G(g); (B.15)

K i = h� j (t)i j 2 G(1;2) � h� j (t)i j 2 G(1;2) + � i for i 2 G(b); (B.16)

K i = h� j (t)i j 2 G(1;3) � h� j (t)i j 2 G(1;3) + � i for i 2 G(c); (B.17)

K i =
X

l2f 2;3g

�
h� j (t)i j 2 G(1;l ) � h� j (t)i j 2 G(1;l )

�
+ � i for i 2 G(e); (B.18)

� j (t) =
X

k2 � (i;j )

� (t � tk
j � dp); (B.19)

� (i; j ) = f kjt f
i (t) � dp < tk

j < t � dpg; (B.20)

where h�ij 2 A denotes the ensemble average over the set A. To omit the dependence of
K i on the index i in the identical set G(�), the set � (i; j ) is substituted with

� (j ) = f kjtk
j < t � dpg; (B.21)

for simplicity.
In the numerical derivation of the one dimensional map g(zn) in Sec. 8.5, the network

with the input K i is treated, and the dynamics of the neurons in G(0) are neglected for
simplicity.
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