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An analysis of globally connected active rotators
with excitatory and inhibitory connections having

different time constants using the nonlinear
Fokker-Planck equations

Takashi Kanamaru, Masatoshi Sekine

Abstract— The globally connected active rotators with excita-
tory and inhibitory connections having different time constants
under noise are analyzed using the nonlinear Fokker-Planck
equation, and their oscillatory phenomena are investigated. Based
on numerically calculated bifurcation diagrams, both periodic
solutions and chaotic solutions are found. The periodic firings are
classified based on the firing period, the coefficient of variation,
and the correlation coefficient, and weakly synchronized periodic
firings which are often observed in physiological experiments are
found.
(IEEE Trans. on Neural Networks, vol.15, issue 5 (2004) pp.1009-
1017.)

Index Terms— active rotator, nonlinear Fokker-Planck equa-
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I. INTRODUCTION

Recently, in the brain science, the role of pulses from a
single neuron and the correlation among pulse trains from
different neurons have been attracting considerable attentions,
and their importance in the information processing is empha-
sized by several authors.

Traditionally, it has been considered that information is
coded in the firing rate of each neuron, and a single pulse
conveys little information because the behaviors of biological
neurons seem to be stochastic. On the other hand, in Refs.
[1]–[4], a possibility of the information transfer with precise
timings of pulses, namely, a possibility of the temporal coding
is argued. The role of a single pulse in the brain function
is still controversial, but some experimental and theoretical
researches have shown that the timing of the firings of single
neurons is reliable for time-varying inputs and it can be a
candidate for a carrier of information in the brain [5]–[7].
These researches suggest that theoretical analyses of pulse
neural networks are of importance to understand the brain
function from the neuronal level [8].

Moreover, in the visual cortex and the hippocampus, many
ensembles of neurons show oscillatory behaviors, and when
such oscillations exist, the pulse trains of neurons in the en-
semble have some degree of correlations (For reviews, see Ref.
[9]). It is proposed that such correlative oscillations contribute
to the binding of information in the visual cortex and the
control of the synaptic plasticity in the hippocampus. And it

is also found that the correlation among neurons in oscillating
ensembles sometimes becomes very weak [10]–[12]. In Ref.
[10], Gray and Singer reported that they could not observe
a rhythmicity in the auto-correlation function of the multiunit
activity (16 out of 30 cases) even when the local-field potential
shows oscillation (29 out of 30) in the cat visual cortex. This
experimental result suggests that the degree of synchronization
among neurons is very weak, but their collective activity shows
an oscillation. Such weakly synchronized periodic firings are
also found in the hippocampus [11], [12]. This ubiquity of
the weakly synchronized periodic firings might suggest their
importance in the information processing in the brain.

Synchronization in neural systems is first modeled by the
networks of excitatory neurons [13]–[17], and the transi-
tion from the asynchronous state to the synchronous state
is analyzed theoretically. Excitatory networks typically yield
very fast and highly synchronized periodic firings, thus they
might not be able to model synchronized oscillations with
relatively small frequencies (e.g., 40 Hz) nor weakly syn-
chronized periodic firings. To model such slow and weakly
synchronized periodic firings, the roles of inhibitory neurons
might be important, and, recently, the networks composed
of excitatory and inhibitory neurons are considered by many
researchers [18]–[23]. In our previous study [23], a noisy pulse
neural network composed of globally connected excitatory
and inhibitory neurons is treated, and various synchronized
oscillations including chaotic ones are analyzed. The period
of the synchronized periodic firing is determined by the noise
intensity and the coupling strength, and, when the system is
close to the saddle-node on limit cycle bifurcation, the period
becomes very long. However, the degree of synchronization
among neurons is somewhat strong, thus this network could
not model the weakly synchronized periodic firings.

In the present paper, behaviors of a noisy pulse neural
network composed of globally connected excitatory and in-
hibitory neurons are analyzed with the nonlinear Fokker-
Planck equation. With the analyses of the Fokker-Planck
equation, the structure of the bifurcations which yield various
synchronized firings can be understood. In the previous study
[23], it was assumed that the excitatory and inhibitory neurons
have identical properties. On the other hand, in the present
paper, the time constant of the inhibitory neurons is set twice
as that of the excitatory ones to incorporate the experimental
observations that the time constant of the inhibitory post-
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synaptic potential is longer than that of the excitatory post-
synaptic potential [3], [24].

In Section II, the definition of our model is given and
its Fokker-Planck equations are introduced. In Section III,
the Fokker-Planck equations are analyzed numerically, and
bifurcation diagrams are obtained. Both periodic solutions and
chaotic solutions are found in some parameter range. The
chaotic solutions are analyzed with the Poincaré section and
the largest Lyapunov exponent. In Section IV, the pulse trains
of the model are analyzed using the interspike interval, the
coefficients of variation, and the correlation coefficients. The
weakly synchronized periodic firings which are often observed
in physiological experiments are also found. Conclusions and
discussions are presented in the final section.

II. DEFINITION OF THE MODEL

Let us consider globally connected active rotators composed
of excitatory neurons θ(i)

E (i = 1, 2, · · · , NE) and inhibitory
neurons θ(i)

I (i = 1, 2, · · · , NI) written as

τE
˙
θ
(i)
E = 1 − a sin θ(i)E + ξ

(i)
E (t)

+
gEE

NE

NE∑
j=1

(− sin θ(j)E + 1/a)

−gEI

NI

NI∑
j=1

(− sin θ(j)I + 1/a), (1)

τI
˙
θ
(i)
I = 1 − a sin θ(i)I + ξ

(i)
I (t)

+
gIE

NE

NE∑
j=1

(− sin θ(j)E + 1/a)

−gII

NI

NI∑
j=1

(− sin θ(j)I + 1/a), (2)

〈ξ(i)E (t)ξ(j)E (t′)〉 = Dδijδ(t− t′), (3)

〈ξ(i)I (t)ξ(j)I (t′)〉 = Dδijδ(t− t′), (4)

〈ξ(i)E (t)ξ(j)I (t′)〉 = 0, (5)

where a is a system parameter and ξ
(i)
E (t) and ξ

(i)
I (t) are

Gaussian white noises with the intensity D injected to the
neurons θ

(i)
E and θ

(i)
I , respectively. And τE and τI are the

time constants. Note that the active rotator is a general model
of the class 1 neuron [25], [26]. For a > 1, an active rotator
shows typical properties of an excitable system, namely, it has
a stable equilibrium θ0 ≡ arcsin(1/a) and − sin(θ(i)(t))+1/a
shows a pulse-like waveform with an appropriate amount of
disturbance. When a is close to 1, the equilibrium θ0 is
close to π/2. In the following, we only consider excitable,
not self-oscillating neurons. Although the active rotators are
often connected diffusively [27]–[30], the active rotators in
our model are connected with the term − sin(θ (i)(t)) + 1/a
to imitate the synaptic connections in the brain.

Let us define the normalized number density of rotators

having the phase θE and θI at time t as

nE(θE , t) ≡ 1
NE

NE∑
i=1

δ(θ(i)E − θE), (6)

nI(θI , t) ≡ 1
NI

NI∑
i=1

δ(θ(i)I − θI), (7)

for the excitatory neurons and inhibitory neurons, respectively.
With nE(θE , t) and nI(θI , t), (1) and (2) are rewritten as

τE
˙
θ
(i)
E = 1 − a sin θ(i)E + ξ

(i)
E (t)

+gEE

∫ 2π

0

dφE(− sinφE + 1/a)nE(φE , t)

−gEI

∫ 2π

0

dφI(− sinφI + 1/a)nI(φI , t), (8)

τI
˙
θ
(i)
I = 1 − a sin θ(i)I + ξ

(i)
I (t)

+gIE

∫ 2π

0

dφE(− sinφE + 1/a)nE(φE , t)

−gII

∫ 2π

0

dφI(− sinφI + 1/a)nI(φI , t). (9)

In the limit of NE, NI → ∞, nE(θE , t) and nI(θI , t)
may be identified with the probability densities. With this
approximation, nE(θE , t) and nI(θI , t) follow the nonlinear
Fokker-Planck equation [31], [32] written as

∂nE

∂t
= − 1

τE

∂

∂θE
(AEnE) +

D

2τ2
E

∂2nE

∂θE
2 , (10)

∂nI

∂t
= − 1

τI

∂

∂θI
(AInI) +

D

2τ2
I

∂2nI

∂θI
2 , (11)

AE(θE , t) = 1 − a sin θE

+gEE

∫ 2π

0

dφE(− sinφE + 1/a)nE(φE , t)

−gEI

∫ 2π

0

dφI(− sinφI + 1/a)nI(φI , t), (12)

AI(θI , t) = 1 − a sin θI

+gIE

∫ 2π

0

dφE(− sinφE + 1/a)nE(φE , t)

−gII

∫ 2π

0

dφI(− sinφI + 1/a)nI(φI , t). (13)

If there are no correlations among the firings of neurons, nE

and nI converge to stationary densities, and if some correlation
exists, nE and nI have time-varying densities. In the limit of
NE , NI → ∞, the dynamics of neurons can be followed by
solving (8) and (9) together with the nonlinear Fokker-Planck
equations (10) and (11) for a desired number of neurons,
and we call it an infinite system. With the infinite system,
we can investigate the interspike interval and the coefficient
of variation of each neuron, and the correlation between two
pulse trains from two neurons in the system.

For simplicity, the connection coefficients are set as gEE =
gII ≡ gint and gIE = gEI ≡ gext, and the parameters are
set as a = 1.05, gint = 1.0, τE = 1, and τI = 2. Note
that the system with τE = τI = 1 is treated in Ref. [23],
and several oscillatory behaviors including chaotic ones are
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observed. Here we treat the system with τE = 1 and τI =
2 to incorporate the experimental observations that the time
constant of the inhibitory post-synaptic potential is longer than
that of the excitatory post-synaptic potential [3], [24].

Similar to the results in Ref. [23], numerical solutions of
the Fokker-Planck equations with uniform initial conditions
nE = nI = 1/2π show various behaviors depending on
the noise intensity D and the connection strength gext. The
typical shapes of nE and nI , and the corresponding firing
patterns for τE = τI = 1 are shown in Ref. [23]. Here we
briefly summarize the behaviors of the system with τE = 1
and τI = 2. Typically, for small D, all neurons emit spikes
randomly with small firing rates, thus nE and nI are sharply
peaked at their equilibria. When D is large, the excitatory
neurons start to fire almost periodically with large firing rates,
but those firings do not have correlations, thus the system
has stable stationary probability densities. And when the noise
intensity D and the connection strength gext are appropriately
chosen, all the neurons oscillate with some correlations, and
the probability densities nE and nI also oscillate periodically.
In the following, we call the firings which correspond to the
time-varying solutions of nE and nI as synchronized firings.

In the next section, the mechanism of the emergence of
synchronized firings is analyzed.

III. BIFURCATION ANALYSIS

Numerically calculated bifurcation diagrams in the
(D, gext) plane are shown in Figs. 1 (a) and (b). The solid,
dotted, and dash-dotted lines denote the Hopf, saddle-node,
and global bifurcations, respectively. Typically, there exist
synchronized firings in the area between the Hopf bifurcation
line and the saddle-node on limit cycle bifurcation line
with moderate values of D. In Fig. 1, flows in the plane
of probability fluxes JE and JI are also shown, and their
explanations are given in the latter half of this section.

The Hopf and saddle-node bifurcation lines are obtained as
follows. First, (6) and (7) are 2π-periodic functions of θE and
θI , respectively, thus they can be expanded as

nE(θE , t) =
1
2π

+
∞∑

k=1

(aE
k (t) cos(kθE) + bEk (t) sin(kθE)),(14)

nI(θI , t) =
1
2π

+
∞∑

k=1

(aI
k(t) cos(kθI) + bIk(t) sin(kθI)),(15)

and, by substituting them, (10) and (11) are transformed into
a set of ordinary differential equations ẋ = f(x) where
x = (aE

1 , b
E
1 , a

I
1, b

I
1, a

E
2 , b

E
2 , a

I
2, b

I
2, · · ·)t. Next a stationary

solution x0 is numerically obtained with the Newton method
[33], and the eigenvalues of the Jacobian matrix Df(x 0)
are analyzed numerically using the QR algorithm [33]. For
numerical calculations, the dimension of x is set 160 or 240
depending on the parameters D and gext.

To understand the bifurcation diagram in Fig. 1, let us
introduce the probability fluxes [34] JE(θE , t) and JI(θI , t)

written as

JE(θE , t) =
1
τE
AEnE − D

2τ2
E

∂nE

∂θE
, (16)

JI(θI , t) =
1
τI
AInI − D

2τ2
I

∂nI

∂θI
. (17)

In the following, the fluxes at θE = θI = 3/2π are observed
because they can be interpreted as the instantaneous firing
rate at t for each ensemble. Note that a stationary solution
and an oscillating solution of the Fokker-Planck equation are
projected as an equilibrium point and a limit cycle onto the
(JE , JI) plane, respectively.

Schematic flows in the (JE , JI) plane for 1.2 < gext <
2.5 are also shown in Fig. 1 (a). Typically, there are three
equilibrium points S0, S1 and S2 which satisfy JE ∼ JI ∼ 0,
JE > JI , and JI > JE , respectively, and a limit cycle L1 is
formed around S1. S0 and S1 are stable for small and large
D, respectively. Note that the limit cycle L1 corresponds to
the synchronized firings, and it is created around S1 by the
Hopf bifurcation, the saddle-node on limit cycle bifurcation,
or the homoclinic bifurcation. The Hopf, saddle-node, and
homoclinic bifurcation lines intersect at a single point like
the Bogdanov-Takens bifurcation [35]. The trajectory at the
homoclinic bifurcation line is shown in the inset (1) in Fig.
1 (a) where the unstable manifold of the unstable equilibrium
spirals back to the identical point. Such a trajectory is possible
because this dynamics actually has infinite degrees of freedom.
For further information of each bifurcation, see Refs. [35],
[36].

Schematic flows in the (JE , JI) plane for 0.2 < gext < 0.8
are shown in Fig. 1 (b). Typically, two equilibrium points
S0, S1, and the limit cycle L1 around S1 exist. Although S1

appears to exist outside of L1 in the (JE , JI) plane, this is
because the high-dimensional dynamics is projected onto the
two-dimensional plane, and the trajectory from the initial point
near S1 converges to L1 as shown in the inset (4) of in Fig.
1 (b). The limit cycle L1 is created by a double limit cycle
(DLC1 in Fig. 1 (b)) bifurcation, namely, the simultaneous
emergence of stable and unstable limit cycles. The bifurcation
around the DLC1 line becomes complex for D < 0.03, and
a limit cycle with 2 or more cycles suddenly emerges when
crossing the bifurcation line. To analyze this bifurcation, the
long computational times and the large numerical precision
are required, thus we could not determine its mechanism.
Thus this bifurcation is labeled as “unknown” in the inset
(5) which shows a schematic bifurcation diagram around the
intersection of the saddle-node bifurcation line and the double
limit cycle bifurcation line. Although we could not observe the
homoclinic bifurcation (HB) in the inset (5) in Fig. 1 (b), it was
shown in a broken line as a conjecture. From the schematic
flows in the (JE , JI) plane, it seems to be natural to assume
the existence of such a bifurcation.

Moreover, with the double limit cycle bifurcation denoted
as DLC2 in Fig. 1 (b), another limit cycle LC is created,
but we do not draw its schematic trajectory for simplicity.
This limit cycle LC is destabilized by a period doubling
bifurcation, and, after a series of period doubling bifurcations,
a chaotic solution emerges. In the following, we denote both
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Fig. 1. Numerically calculated bifurcation diagrams for (a) 1.2 < gext < 2.5 and for (b) 0.2 < gext < 0.8 with the schematic flows in the (JE , JI)
plane. The solid and dotted lines denote the Hopf bifurcation line and the saddle-node bifurcation line, respectively. The dash-dotted lines denote the global
bifurcations. The filled and open circles in the trajectories in the (JE , JI) plane denote the stable and unstable equilibrium points, respectively. And the solid
and dashed closed curves denote the stable and unstable limit cycle, respectively. The meanings of the abbreviations are as follows: C, Cusp; SN, saddle-node;
SNL, saddle-node on limit cycle; HB, homoclinic bifurcation; DLC, double limit cycle; H, Hopf; GH, generalized Hopf; SH, subcritical Hopf.

the periodic solutions and the chaotic solutions as LC because
they originate from the same double limit cycle bifurcation
DLC2.

To characterize LC , let us consider a Poincaré section at
the line JI = 0.02 in the (JE , JI) plane, and observe the
points where the trajectory intersects this line in the positive
direction. The positions of the attractors for LC and L1 on
the Poincaré section against gext for D = 0.03 are shown
Fig. 2 (a). The range of gext is determined so that it covers
the area where LC exists. It is observed that L1 and LC

coexist, LC becomes chaotic through a series of period-

doubling bifurcations, and it disappears by a crisis.
To confirm that the chaotic behaviors in Fig. 2 (a) are

actually chaotic, the largest Lyapunov exponent is calculated
by a standard technique [37], namely, by calculating the
expansion rate of two nearby trajectories each of which follows
a set of ordinary differential equations ẋ = f(x) for the
spatial Fourier coefficients of (10) and (11). In Fig. 2 (b),
the largest Lyapunov exponent for LC corresponding to Fig.
2 (a) is shown. It is observed that it takes positive values when
chaotic solutions exist, and takes zero when periodic solutions
are stable.
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Fig. 2. (a) The bifurcation diagram for D = 0.03. The points at which the
trajectory crosses the line JI = 0.02 in the positive direction are plotted. (b)
The corresponding largest Lyapunov exponent.

IV. PULSE ANALYSIS

In the previous section, the Fokker-Planck equations (10)
and (11) are treated, and the average behaviors of neurons
are analyzed. The numerically obtained bifurcation diagram
is more complex than that of the system with τE = τI = 1
treated in the previous study [23], but both mechanisms of
bifurcations are similar. In this section, the infinite system
governed by (8), (9), (10), and (11) is mainly considered, and
the behaviors of a single neuron in the network with infinite
number of neurons are investigated. With such analyses, the
comparison of our model with the experimental data would be-
come possible, and we would observe the weakly synchronized
periodic firings which are not found in the previous study.
In the following, the parameters where only the oscillating
solution is stable in the system are treated.

First, let us define the interspike interval (ISI) as

Tk = tk+1 − tk, (18)

where tk is the k-th firing of the neuron. Note that the
firing time of the i-th neuron is defined as the time when
− sin(θ(i)(t)) + 1/a exceeds the value 1.5. With Tk, the
coefficient of variation of the pulse train {tk}k is defined as

CV =

√〈T 2
k 〉 − 〈Tk〉2
〈Tk〉 . (19)

where 〈·〉 denotes the average over k. CV takes large values
for random pulse trains, and takes zero for periodic pulse
trains. The mean interspike interval T ≡ 〈Tk〉 and CV are
used to investigate the properties of a single pulse train. In the
following, the mean interspike intervals and the coefficients of
variation of the excitatory and inhibitory neurons are denoted
as TE , TI , CV E , and CV I , respectively.

Next, let us define the correlation coefficient C between two
pulse trains [38]. Usually, the correlation between two phase
models is measured by the order parameter 〈cos(θ i−θj)〉, but
it takes large values even when two rotators are fluctuating
around their equilibria, thus it is not appropriate to measure
the correlation between two pulse trains. To define C, the time
under observation is divided into n bins of the width ∆, and
the number of pulses in the i-th bin is denoted as X i and Yi

for two pulse trains. Note that the width ∆ is sufficiently small
so that Xi and Yi take the value 0 or 1. Then X =

∑
Xi and

Y =
∑
Yi are the numbers of pulses, and Z =

∑
XiYi is

the number of coincident pulses. The correlation coefficient
C between two pulse trains is defined as

C =
Z − (XY )/n√

X(1 −X/n)Y (1 − Y/n)
∈ [−1, 1]. (20)

Note that C takes the value 1 for the identical pulse trains
and takes the value 0 in the large n limit for two pulse trains
without correlation. And C takes the value −1 when two pulse
trains have a negative correlation, namely, X i + Yi = 1 for
i = 0, 1, 2, · · ·. In the following, the value ∆ = 5 is used.

Let us consider two infinite systems, each of which is gov-
erned by (8), (9), (10), and (11) with statistically independent
noises. This system is composed of two excitatory and two
inhibitory neurons, and each neuron is statistically identical
with the one in the original system with infinite numbers of
neurons. Thus the correlations between two neurons in the
infinite system reflect the correlation among the neurons in
the original finite system. In the following, the correlations
between two excitatory neurons and between two inhibitory
neurons are denoted as CEE and CII , respectively.

The dependences of TE , TI , CV E , CV I , CEE , and CII

on the noise intensity D is shown in Fig. 3 for three values
of gext. In the following, the behaviors of excitatory neurons
are mainly considered. For all gext, near the SNL bifurcation,
the periods T and the correlations C take large values, and the
coefficients of variation CV take small values. It is because the
system spends a large time around its original equilibrium after
the saddle-node bifurcation. Following Ref. [19], let us denote
such firings as SSR (slow, synchronous, and regular) firings.
Near the Hopf bifurcations, T , C, and CV take small values
for gext = 0.7, and T and C take small values, and CV takes
large values for gext = 1.0. Thus let us denote these firings as
FAR (fast, asynchronous, and regular) firings and FAI (fast,
asynchronous, and irregular) firings, respectively. Near the
Hopf bifurcation for gext = 1.5, the anomalous behavior
where T increases with the increase of D is observed. (Fig.
3 (c)). Let us denote such firings as SAI (slow, asynchronous,
and irregular) firings.

The raster plots of the firing times of SSR, FAR, FAI, and
SAI firings for the finite system with NE = NI = 1000, and
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NE = NI = 1000. In the raster plot of each firing, the field potential of the excitatory neurons is also shown.

the corresponding probability fluxes are shown in Fig. 4. In the
raster plot of each firing, the field potential of the excitatory
neurons defined as

Fp =
1
NE

NE∑
i=1

(
− sin(θ(i)E (t)) + 1/a

)
, (21)

is also shown. In the SSR firings (Figs. 4 (a) and (e)), it

is observed that almost all the neurons strongly synchronize
each other. In the FAR firings (Figs. 4 (b) and (f)), all the
excitatory neurons fire with high frequency, but their degrees
of synchronization are weak. The each excitatory neuron fires
several times every period (about 15) because the minimum
value of JE is large, thus each neuron tends to fire with
the interval of the width of pulse (about 5) and the firings
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become relatively regular. In the FAI firings (Figs. 4 (c) and
(g)), all the excitatory neurons have high frequencies and
weak correlations. However, unlike the FAR firings, the each
excitatory neuron fires about once every period (about 20),
thus the variance of the ISIs is large, and CV takes large
values. Also in the SAI firings (Figs. 4 (d) and (h)), the
correlation among the excitatory neurons is weak, but the SAI
firings have an essentially different property from the other
firings. The raster plots of SAI firings in Fig. 4 (h) is enlarged
in Fig. 5. It is observed that only a small fraction of neurons
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Fig. 5. The enlarged figure of the raster plots of SAI firings in Fig. 4 (h).

fire every period, namely, the periodicity and the degree of
synchronization of the SAI firings are very weak.

For each firings, the auto-correlograms defined as a his-
togram of the difference tk − tl (k, l = 1, 2, · · ·) of the
firing times of an excitatory neuron in the finite system with
NE = NI = 1000 are shown in Figs. 6 (a), (b), (c), and (d).
The maximum value of the auto-correlogram is normalized to
1. It is observed that the SSR firings have a long period and
show a strong periodicity. Moreover, there are long periods of
time when almost all the neurons are silent. The FAR firings
have a short period, and have peaks at the width of the pulse
(about ±5), and the period of the FAI firings is also short.
And it is observed that the periodicity of the SAI firings is
very weak.

Similarly, their cross-correlograms are shown in Figs. 6 (e),
(f), (g), and (h). The cross-correlogram for two pulse trains
{t1k} and {t2l } is defined as a histogram of the difference t2l −t1k
which is normalized by the number of pulses of the pulse train
{t1k}, and it is calculated for two neurons in the network. It
is observed that the sharp peak at t = 0 is observed only for
the SSR firings, namely, the degree of synchronization of the
SSR firings is stronger than the other firings.

As shown above, the field potential Fp of the SAI firings
show a periodicity (Fig. 4 (h)), but the auto-correlogram
of a single neuron shows a very weak periodicity. Such
weakly synchronized periodic firings are reported in many
physiological experiments [10]–[12], and the SAI firings might
relate to them. The mechanism of the SAI firings is understood
as follows. As shown in (1) and (2), or (8) and (9), the input
to a neuron in the network is composed of a sum of mean-
field inputs and noise, and when a periodic solution exists in

the system, the mean-field inputs work as a periodic input
to the neuron. When this periodic input is sub-threshold for
the neuron, the SAI firings take place. Note that the Hopf
bifurcation must take place near the origin in the (JE , JI)
plane to obtain the sub-threshold periodic input (see Figs. 1
(a) and 4 (d)). The boundary of the parameters which yield
the SAI firings are shown in Fig. 7. This boundary shows

 0
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 2

 2.5

boundary of SAI firings

0.01 0.1 0.50.005
D

g
ext

FAI

FAR

SSR TJ <J   >=1.5E

SAI

Fig. 7. The boundaries of the FAR, FAI, and SAI firings. The typical areas
where each firings take place are also shown.

the parameters where the neuron starts to fire in the system
governed by (8), (9), (10), and (11) with ξ (i)

E (t) = ξ
(i)
I (t) = 0.

In the area enclosed by the boundary line, the Hopf bifurcation
line, and the saddle-node bifurcation line, only the SAI firings
are stable in the system.

The difference between the FAR firings and the FAI firings
is the strength of periodicity, and excitatory neurons in the
FAR firings tend to fire even when the probability flux JE

is minimum. Thus, for convenience, we define the boundary
between the FAR firings and the FAI firings as a line of
TJ〈JE(t)〉 = 1.5 where TJ is the period of JE(t) and 〈·〉
denotes the average over time. Note that TJ〈JE(t)〉 is a mean
number of firings in one period TJ of an excitatory neuron. For
the neurons in the FAR firings or FAI firings, TJ〈JE(t)〉 tend
to be larger than 1 because they fire at least once when JE(t)
is maximum. If TJ〈JE(t)〉 > 1.5 is satisfied, the probability
for the neuron to fire when JE is minimum is larger than that
to be silent, thus we define such firings as FAR firings. This
boundary is also shown in Fig. 7.

V. CONCLUSIONS AND DISCUSSIONS

The globally connected active rotators with excitatory and
inhibitory connections having different time constants under
noise are analyzed using the nonlinear Fokker-Planck equation,
and their oscillatory phenomena are investigated. Based on
numerically calculated bifurcation diagrams, the average be-
havior of the network is analyzed, and both periodic solutions
and chaotic solutions are found. The bifurcation diagram is
more complex than that of the network with identical time con-
stants (τE = τI ) [23], but both mechanisms of the bifurcations
are similar. When behaviors of a single neuron are observed,
the effect of the different time constants becomes clear. The
periodic firings are classified based on the statistics obtained
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Fig. 6. The auto-correlograms of the firing times of a neuron in the finite system with NE = NI = 1000 for the (a) SSR, (b) FAR, (c) FAI, and (d) SAI
firings, and the corresponding cross-correlograms.

from single neurons, namely, the firing period, the coefficient
of variation, and the correlation coefficient. The SSR (slow,
synchronous, and regular) firings are observed near the saddle-
node bifurcation line, and the FAR (fast, asynchronous, and
regular) firings, the FAI (fast, asynchronous, and irregular)
firings, and the SAI (slow, asynchronous, and irregular) firings
are observed near the Hopf bifurcation line. The periodicity
and the degree of synchronization of the SAI firings are very
weak, and similar firings are observed in many physiological
experiments [10]–[12]. Such weakly synchronized periodic
firings are not found in the network with identical time
constants. It is found that the SAI firings are caused by a sub-
threshold mean-field periodic input and noise. Note that the
input composed of a sub-threshold periodic input and noise is
often considered in the literature of stochastic resonance [39].
Although the external signal does not exist in our system, the
interactions among neurons generate a sub-threshold periodic
input. Note that the strength of the periodic input also changes
with the change of the noise intensity, thus the theoretical
results of stochastic resonance would not apply to our model.

To obtain a sub-threshold periodic input, the Hopf bifur-
cation must take place near the origin in the (JE , JI) plane
(see Figs. 1 (a) and 4 (d)). Such a situation would be realized
when the firings of excitatory neurons and inhibitory neurons
are balanced [2], [18]. In the previous study for τE = τI = 1,
the SAI firings did not take place because the firing rates of the
excitatory neurons are larger than those of inhibitory neurons
[23]. On the other hand, for τE = 1 and τI = 2, the effect
of the firings of inhibitory neurons are relatively strengthened
because the effect of the inhibition lasts for longer times, thus
the balanced state is realized. General conditions to obtain
such a balanced state have not been understood, but, under
our constraints gEE = gII = gint and gEI = gIE = gext, the
time constant of inhibitory neurons must be larger than that of
excitatory neurons to realize the balanced state and the weakly

synchronized periodic firings.
Let us interpret the synchronized oscillation from a stand-

point of information coding in the brain. A neuron in an oscil-
lating ensemble contributes to the generation of the oscillation,
and, for the weakly synchronized periodic firings (SAI firings),
this contribution is very weak. This weakness might imply that
this neuron can belong to multiple oscillating ensembles with
different frequencies simultaneously. If such an oscillating
ensemble with weak synchronization is interpreted as a cell
assembly and corresponds to a function in the brain [40],
[41], a neuron which belongs to multiple oscillating ensembles
contributes to different tasks of the brain simultaneously.
In this scheme of information coding, the brain performs
various tasks with repetitive rearrangements of synchronized
ensembles. Examining the possibility of such an information
coding from a dynamical standpoint is a future work.
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