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Abstract

Nonlinear dynamics of coupled FitzHugh–Nagumo neurons subject to inde-

pendent noise is analysed. A kind of self–sustained global oscillation with al-

most synchronous firing is generated by array–enhanced coherence resonance.

Further, forced dynamics of the self–sustained global oscillation stimulated

by sinusoidal input is analysed and classified to synchronized, quasi–periodic

and chaotic responses just like forced oscillations in nerve membranes ob-

served by in vitro experiments with squid giant axons. Possible physiological

importance of such forced oscillations is also discussed.
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I. INTRODUCTION

Neurons are fundamental elements constituting the biological brain. Information pro-

cessing in the brain is believed to be supported by nonlinear dynamics of such neurons [1].

The nonlinear dynamics of neurons has been studied both experimentally and theoretically

as a main topic in neuroscience [1,2]. In particular, squid giant axons and the mathematical

model of the Hodgkin–Huxley equations have been greatly contributing to such research on

nonlinear neurodynamics [3].

Well–controlled in vitro experiments with squid giant axons and corresponding theoret-

ical analysis with the Hodgkin–Huxley equations have clarified existence of rich nonlinear

phenomena in nerve membranes like a self–sustained oscillation with repetitive firing of ac-

tion potentials and the Hopf bifurcation [4–6]. Moreover, as a simple case of interaction

among such neural oscillators, forced oscillations of a self–sustained neural oscillator stim-

ulated by periodic input such as sinusoidal and pulse–train currents have been intensively

analysed and classified as synchronized, quasi–periodic, and chaotic oscillations [7–9]. Fig-

ures 1 (a), (b) and (c) show examples of a self–sustained oscillation with repetitive firing

of action potentials, a 1/1–synchronized oscillation where one action potential is generated

during each period of a sinusoidal force periodically, and a chaotic oscillation in squid giant

axons. Here, the forced oscillations of Figs. 1 (b) and (c) are observed by stimulating a

self–sustained oscillator of Fig. 1 (a) with a sinusoidal current which amplitude and fre-

quency are changed as the bifurcation parameters [7–9]. In particular, existence of chaotic

oscillations in squid giant axons like one of Fig. 1 (c) has been confirmed by examining the

geometric structure of reconstructed attractors [10] as well as by calculating the indices of

chaos such as the Lyapunov exponent [11] and deterministic predictability [12,13]. Further,

neural oscillations have been also payed much attention as possible mechanism of functions

in the brain like binding distributed pieces of information, although careful discussion on

e.g. relation between synchrony and oscillations are indispensable [14].

When we consider nonlinear oscillations as neuronal correlates which actually play func-
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tional roles in the brain, there exist two problems that should be carefully examined. Namely,

(1) realization of neural oscillators by cortical neurons which dynamics is excitable rather

than oscillatory and (2) effects of ubiquitous background noise to cortical neurons that

operate in such a noisy environment.

Effects of noise on nonlinear dynamics like noise-induced order [15] and stochastic res-

onance [16] have been one of important topics in nonlinear science. Among these studies,

coherence resonance (CR) and similar dynamics [17–27] are closely related to the two prob-

lems raised above. In particular, array–enhanced coherence resonance provides a possible

mechanism that coupled excitable neurons subject to independent external noise operate like

synchronized self–sustained oscillators generating almost regular firing of action potentials

[26,27]. Moreover, interesting nonlinear phenomena such as synchronization of interacting

coherence resonance oscillators [28] and global forced activities of coupled noisy excitable

systems [29] have been also analysed.

In this paper, time series data of interspike intervals in coupled noisy excitable systems

of the FitzHugh–Nagumo neurons [30,31] are analysed with nonlinear time series analysis

which had been effective to elucidate nonlinear dynamics of squid giant axons directly from

electrophysiological data [12,13].

II. ARRAY–ENHANCED COHERENCE RESONANCE IN COUPLED

FITZHUGH-NAGUMO NEURONS

Based on the models in Refs. [20,25,27], coupled FitzHugh-Nagumo neurons in an M×N

lattice is represented as follows :

εẋij = xij −
x3

ij

3
− yij + ξij(t)

+g(xi+1,j + xi−1,j + xi,j+1 + xi,j−1 − 4xij), (1)

ẏij = xij + a (2)

(i = 1, 2, · · · ,M, j = 1, 2, · · · , N),

3



where ε, g and a are parameters and the periodic boundary condition such that xM+1,j = x1,j,

x−1,j = xM,j, xi,N+1 = xi,1, and xi,−1 = xi,N is employed. We set ε = 0.01 and a = 1.05 to

keep every neuron excitable so that the resting state is asymptotically stable if without any

external inputs. The noise terms ξij(t) are independent Gaussian white noise with intensity

D, i.e., 〈ξij(t)ξkl(t
′)〉 = 2Dδikδjlδ(t − t′). The coupling among the elements is local and

diffusive with strength g. Different from the neuron models in previous studies on coherence

resonance (CR) [20,23,27], the noise terms are incorporated in eq. (1) rather than eq. (2)

to explore effects of background current noise to the variable x which corresponds to the

membrane potential of a neuron.

Let the sequence t
(ij)
0 < t

(ij)
1 < t

(ij)
2 < · · · < t

(ij)
Kij

denote the series of firing times of xij.

From the sequence of {t(ij)k }, the interspike intervals (ISI) are defined as T
(ij)
k = t

(ij)
k − t

(ij)
k−1

(k = 1, 2, · · · , Kij). To characterize the coherence of the output spike train, the coherence

measure R is defined as follows [20,27]:

R =
〈T (ij)

k 〉√
〈(T (ij)

k )2〉 − 〈T (ij)
k 〉2

, (3)

where

〈(T (ij)
k )n〉 =

∑M
i=1

∑N
j=1

∑Kij

k=1(T
(ij)
k )n

∑M
i=1

∑N
j=1 Kij

. (4)

In short, R is the ratio of the average and the standard deviation of the interspike intervals

and is a kind of signal–to–noise ratio in the meaning that periodicity with repetitive firing

at fixed intervals is a signal. It should be noted that R is the reciprocal of the coefficient of

variation in a point process that is widely used in the field of neuroscience [1,32,33].

We have numerically calculated R as a function of g and D for the two-dimensional

square lattice with M = N and the one-dimensional lattice with M = 1. The features of

the dependence of R on g and D are almost the same as those reported in Ref. [27] where

the setup of the system is different from that of the present paper in the following meaning;

the slow variable y is perturbed by the noise, the parameter a of each element is randomly

distributed over an interval, and the lattice is one-dimensional [27]. The system of eqs. (1)
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and (2) exhibits array-enhanced CR [27], i.e., there exists an optimal pair of noise intensity

and coupling strength, both in the two-dimensional square lattice and in the one-dimensional

lattice. By the numerical experiment, as shown in Fig. 2, we have found that the maximum

value R∗ of R at the optimal D and g increases with the system size and saturates around

R̄ ∼ 40 and R̄ ∼ 26 for the two-dimensional and one-dimensional lattices, respectively. It is

also observed that the optimal noise intensity and the optimal coupling strength converge to

constants, which is contrasted with the case of array-enhanced stochastic resonance where

the optimal noise intensity and the optimal coupling strength satisfy scaling relations with

the system size [34]. The saturation of the value of R with increasing the system size

is phenomenologically understood by observing a sequence of activity pattern of a large

system at the optimal pair of noise intensity and coupling strength. As shown in Fig. 3,

several spots of firing appear first, then they grow into global firing; thus, for each element,

there is an effective size of system which is relevant to the firing of the element. As a result,

the degree of overall synchronization of firing becomes worse with increase of the system

size [25]. By assuming the existence of the effective system size, it is concluded that the

maximum value R∗ of R does not depend on the system size for systems larger than the

effective system size. A detailed analysis concerning the existence of the effective system

size is left as a future work.

We can conclude that the two-dimensional lattice can achieve more coherence than the

one-dimensional one. Roughly speaking, this enhancement of CR by the increase of the

dimension of the lattice is considered to be due to the fact that firing of one element can

propagate more easily to the other elements and synchronization of the elements takes place

more easily with a moderate strength of the coupling.

Figure 4 shows a typical time series of x11 with a high value of R. Despite the random-

ness of the noise input, it shows nearly periodic oscillation with repetitive firing of action

potentials. This coherence resonance oscillation results from the collective motion of the

diffusively coupled neurons subject to independent noise. In the next section, we perturb

this noise-induced coherent oscillation by periodic sinusoidal input, to consider effects of
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interaction between the two oscillatory modes, namely a self–sustained oscillation and an

external periodic force.

III. FORCED DYNAMICS OF COHERENCE RESONANCE OSCILLATORS

Under the condition that g and D are set so that R is nearly maximized, let us periodically

perturb the system with sinusoidal input [7–9,29]. Then, eq. (1) is modified to include the

periodic forcing term as follows:

εẋij = xij −
x3

ij

3
− yij + ξij(t) + A sin

(
2πt

B

)

+g(xi+1,j + xi−1,j + xi,j+1 + xi,j−1 − 4xij). (5)

In order to observe interaction between the two oscillatory modes, the amplitude A of the

periodic forcing is set at a relatively large value A = 0.1; when D = 0 and M = N = 1,

namely in the case of a single neuron, this strength is suprathreshold for 0.2 ≤ B ≤ 7.1

and subthreshold for B ≥ 7.2. The system size is fixed at M = N = 10 and the noise

intensity and the strength of coupling are determined as D = 4.0 × 10−5 and g = 0.06 so

that R attains its almost maximum value ∼ 38 at the present system size. Note that R ∼ 38

is close to the limiting value R̄ ∼ 40 in the large system size limit and in this sense the

system size M = N = 10 is considered to be large enough. In the following, the sequence

{T1, T2, · · · , TK} of interspike intervals of x11 is analysed.

In Fig. 5, the firing rate ρ ≡ BK/(
∑K

i=1 Ti), i.e., the average frequency of firing during

one period of external forcing, is plotted against the period B of the external force. There

are plateaus with simple rational values of the firing rates, which commonly appear in

deterministic two-frequency systems and indicate synchronized oscillations [35]. As in the

deterministic systems, between two adjacent plateau regions competition between the two

oscillatory modes is expected to generate non-trivial motion. In the deterministic systems,

the typical non-trivial motion is a chaotic oscillation [7–9,35], while quasi-periodic motion

is also typical but trivial.
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The left column of Fig. 6 shows plots of Ti+1 against Ti for several values of B implying

that the system is well reconstructed on the Ti–Ti+1 plane [36]. At B = 3.3 corresponding

to the plateau at the firing rate ρ = 1, the points on the Ti–Ti+1 plane form one cluster

showing a nearly 1/1–synchronized oscillation. Similar analysis confirms that each plateau

of the firing rates in Fig. 5 represents a phase-locked synchronized motion. Since the system

is subject to random noise, it should be noted that there is a non-zero probability that the

response is accidentally unlocked, i.e., the point deviates temporarily away from clusters

corresponding to a periodic point on the Ti–Ti+1 plane, in the observation over a long time.

At B = 2.5, 5.0, and 10.0, the phase-unlocked motions are observed; there appear

nonlocalized points on the Ti–Ti+1 plane and the return plots of phases ϕi = 2πt
(11)
i /B

(mod 2π). Our interest here is whether the motions have deterministic instability or not, i.e.,

whether the system inherently generates complex motions according to a kind of determinism

or not. If the answer is affirmative, then the motions are considered to be a counterpart of

chaotic oscillations.

In order to characterize the observed interspike interval data from the viewpoint of

determinism, let us explore the normalized prediction error (NPE) with the nearest-neighbor

method of prediction [36,37]. With the reconstructing dimension m and delay coordinate

vectors of interspike intervals Vj = (Tj−m+1, · · · , Tj), the dynamical behavior is reconstructed

in Rm. Here we take m = 3 which seems to be appropriate as shown in Fig. 6. Let L

be the number of state points in the reconstructed phase space Rm and, for a fixed j0,

choose l = βL(β < 1) points that are nearest to the point Vj0 in Rm and denote them by

Vjk
= (Tjk−m+1, · · · , Tjk

) (k = 1, 2, · · · , l). With {Vjk
} (k = 1, 2, · · · , l), a predictor of Tj0+h

for h steps ahead is constructed by the following average [36,37]:

pj0(h) =
1

l

l∑

k=1

Tjk+h. (6)

The normalized prediction error (NPE) is defined by

NPE =
〈(pj0(h)− Tj0+h)

2〉 1
2

〈(〈Tj0〉 − Tj0+h)2〉 1
2

, (7)
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where 〈·〉 stands for the average with respect to j0 over the observed sequence. If the NPE is

much less than 1, it can be said that the deterministic prediction fits well to the time series.

The small NPE indicates the existence of deterministic structure behind the time series

data, because this algorithm is based on the assumption that the dynamical structure of a

finite-dimensional deterministic system can be well reconstructed by the delay coordinates

of interspike interval data [36]. In order to confirm the deterministic property, the values of

NPE should be compared with those of NPE for a set of surrogate data [38]. The surrogate

data are new time series generated from the original time series under some null hypothesis

so that the new time series preserves some statistical properties of the original data. Here,

we use three kinds of surrogation, namely, random shuffled (RS), Fourier shuffled (FS),

and amplitude adjusted Fourier transformed (AAFT) surrogate data which respectively

correspond to the null hypotheses of independent and identically distributed random process,

a linear stochastic process, and a linear stochastic process observed through a monotonic

nonlinear function [37,38].

Figure 7 shows NPE with m = 3, L = 3000, and β = 0.01 as a function of prediction

steps h for each value of B used in Fig. 6. For the phase-locked motion with the firing

rate 1 in Fig. 6 (a), each NPE has a value close to 1. This is due to the fact that for the

synchronized motion the interspike intervals Ti slightly fluctuate around a constant value

with small and almost independent fluctuation.

In the case with B = 10.0 where an almost closed curve and a monotonous and invertible

circle map are observed in the Ti–Ti+1 plane and the return plots of phases in Fig. 6 (b),

respectively, the NPE is small compared with those of the surrogate data and almost constant

for 1 ≤ h ≤ 9 as shown in Fig. 7 (b), suggesting that the motion corresponds to a quasi-

periodic oscillation in deterministic systems. In the cases with B = 2.5 and 5.0, the NPEs

are relatively small at h = 1 and monotonically increase with increasing h to values close to

1. The motions are predictable for h = 1 and the deterministic predictability is gradually

lost with the increase of the prediction step h. This implies that the motion has deterministic

instability. From the dependence of NPE on h, the system with B = 5.0 is considered to
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have stronger instability than the system with B = 2.5.

Figures 6 and 7 enable us to classify the observed responses into three kinds of motions,

namely the synchronized and phase-locked motion, the phase-unlocked motion without de-

terministic instability, and the phase-unlocked motion with deterministic instability. Thus,

interaction between two kinds of oscillatory modes, one sustained by array–enhanced CR

with the noise and the other of external periodic forcing, produces a motion with determin-

istic instability, which is non-trivial in the following senses: this is neither the case where an

underlying chaotic motion is perturbed by noise nor the case where noise is just nonlinearly

amplified by the dynamics. Indeed at D = 0 only a synchronized motion with the external

forcing is observed for B ≤ 7.1 and no firing is observed for B ≥ 7.2. This non-trivial

motion may be called CR–sustained deterministic chaos where almost synchronous firing is

generated repetitively and chaotically from forced CR oscillators.

IV. CONCLUSION

Coherence resonance in coupled FitzHugh-Nagumo models in lattices is examined and

the array-enhanced coherence resonance is observed. It is found that higher coherence is

achieved in the two-dimensional lattice compared with the one-dimensional one; the maxi-

mum of R as a function of the noise intensity D and the strength g of coupling has larger

values in the two-dimensional lattice than in the one-dimensional one. The periodic pertur-

bation of the coherence resonance oscillation with high R generates three kinds of motions,

namely, the phase-locked synchronized motion, the phase-unlocked motion without deter-

ministic instability, and the phase-unlocked motion with deterministic instability, which

correspond to a synchronized oscillation, a quasi–periodic oscillation, and a chaotic oscilla-

tion in deterministic systems [7,9,35], respectively. It is remarked that the phase-unlocked

motion with deterministic instability is non-trivial and a counterpart of deterministic chaos.

In conclusion, an assembly of the excitable neuron models subject to independent noise

cooperatively generates a highly coherent oscillation with repetitive and almost synchronous
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firing of action potentials by array–enhanced coherence resonance [27]. Periodic forcing,

which can be realized by interaction between such two assemblies with array–enhanced

coherence resonance, can generate such rich forced responses as synchronous, quasi–periodic,

and chaotic ones, just like forced oscillations in nerve membranes observed by well–controlled

in vitro experiments with squid giant axons [7–9]. This result implies that neural oscillators

which existence has been assumed in theoretical models of many dynamical neural networks

and physiologically confirmed by in vitro experiments as shown in Fig. 1, are not necessarily

specific to such theoretical and experimentally well-controlled situations but biologically

plausible because such oscillators can be self–organized by coupled neurons, which dynamics

is excitable rather than oscillatory and subject to background noise similarly to cortical

neurons in the biological brain.
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FIGURES

(a)

(b)

(c)

FIG. 1. Examples of electrophysiological results with squid giant axons. (a) a self-sustained

oscillation with repetitive firing of action potentials, (b) a 1/1–synchronized forced oscillation, and

(c) a chaotic forced oscillation. In each figure, the upper and lower waveforms show the stimulating

current and the membrane potential, respectively. Giant axon of squid (Doryteuthis bleekeri) were

used in the experiment. The self–sustained oscillation in (a) was induced by bating the axon in

mixture of natural sea water and 550mM NaCl [6]. The forced oscillations in (b) and (c) were

produced by stimulating the self–sustained neural oscillator with sinusoidal currents through an

internal platinized platinum wire electrode [8].
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FIG. 2. System size dependence of the maximum R∗ of R for the one-dimensional and

two-dimensional lattices. Saturation of the growth of R∗ is observed in large system sizes.
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FIG. 3. A sequence of activity patters {xij} at time intervals of 0.1 around synchronous firing

for the two-dimensional lattice with N = M = 50, D = 6× 10−5, and g = 0.08. The whiter point

corresponds to high values of x showing firing.
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dle), and waveforms (right) of the variable x (lower) and the stimulation (upper) for B = (a)

3.3, (b) 10.0, (c) 2.5, and (d) 5.0. Here, the phases of the middle column are defined as follows :

ϕi ≡ 2πt
(11)
i /B (mod 2π).
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(a) B=3.3
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(b) B=10.0
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(c) B=2.5
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(d) B=5.0
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FIG. 7. The relation between NPE and prediction steps h for B = (a) 3.3, (b) 10.0, (c) 2.5,

and (d) 5.0. The solid lines show NPE of the original data.
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