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Abstract

The roles of inhibitory neurons in synchronous firing are
examined in a network of excitatory and inhibitory neu-
rons with Watts and Strogatz’s rewiring. By examining
the persistence of the synchronous firing that exists in
the random network, it was found that there is a proba-
bility of rewiring at which a transition between the syn-
chronous state and the asynchronous state takes place,
and the dynamics of the inhibitory neurons play an im-
portant role in determining this probability.

1 Introduction

Recently, oscillations and synchronization in neural sys-
tems have attracted considerable attention. Particularly,
in the visual cortex and the hippocampus, synchronized
oscillations with characteristic frequencies are often ob-
served in the averaged behavior of the neuronal ensem-
ble. It is proposed that they are related to the binding of
the information in the visual cortex and the regulation of
the synaptic plasticity in the hippocampus (Gray, 1994;
Buzsáki, 2006).

These phenomena are often modeled by the coupled
self-oscillating neurons. Typically, the networks of ex-
citatory neurons (Mirollo & Strogatz, 1990; Kuramoto,
1991; Abbott & van Vreeswijk, 1993; Tsodyks, Mitkov,
& Sompolinsky, 1993; Hansel, Mato, & Meunier, 1995;
van Vreeswijk, 1996; Sato & Shiino, 2002; DeVille &
Peskin, 2008) show some degree of synchronized firing
among neurons, such as perfect synchronization (Mirollo
& Strogatz, 1990; Kuramoto, 1991), frequency locking
(Tsodyks, Mitkov, & Sompolinsky, 1993), anti-phase
synchronization (Hansel, Mato, & Meunier, 1995; Sato
& Shiino, 2002), partial synchronization (van Vreeswijk,
1996), coexistence of synchrony and asynchrony (DeV-

ille & Peskin, 2008), and so on. Moreover, it is also
known that the networks of inhibitory neurons generate
synchrony more easily than those of excitatory neurons
(van Vreeswijk, Abbott, & Ermentrout, 1994; White et
al., 1998; Lewis & Rinzel, 2003; Nomura, Fukai, & Aoy-
agi, 2003). In these networks, it was found that the
forms of interactions play critical roles in the genera-
tion of synchrony, such as the rise and decay time of the
post synaptic potential. On the other hand, in the case
of the network of excitable neurons, each of which does
not emit spikes without disturbance, it is known that
the network composed of both excitatory and inhibitory
neurons shows synchronous firing when the strength of
the connections and the amount of disturbance are ap-
propriately chosen (Brunel, 2000; Kanamaru & Sekine,
2003, 2004, 2005; Kanamaru & Aihara, 2008). The con-
nections of the network of the above theoretical models
are either random or all-to-all, and the dependence of
synchrony on the topology of the network has not been
examined.

Regarding the topology of networks, Watts and Stro-
gatz (WS) proposed a network with a small average
shortest path length and a large clustering coefficient
whose connections are obtained by rewiring the connec-
tions of the locally connected regular network. This net-
work is called a small-world network (Watts & Strogatz,
1998), and its properties are often observed in social net-
works, the Internet, gene networks, the brain, and so on
(Strogatz, 2001). Roles of small-world topology on syn-
chronization in nonlinear oscillators were examined by
several authors (Barahona & Pecora, 2002; Hong, Choi,
& Kim, 2002), and it was found that the effect of rewiring
or adding short cuts to the network depends on the initial
configuration of the network. When the number of con-
nections of the initially local network is small, the addi-
tion of a small number of short cuts effectively enhances
synchrony in the network (Barahona & Pecora, 2002).
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When the connections of the initially local network is
strong, the number of rewirings required for the gener-
ation of synchrony becomes small (Hong, Choi, & Kim,
2002). Both results were obtained in the diffusively con-
nected network in which strong connections contribute
to generate synchrony in the network.

In particular, the properties of the small-world net-
work are considered to be important in the brain because
they realize an efficient signal transmission even when
the volume of axon wiring is limited to some ratio of the
brain size (Buzsáki, 2006). The synchronization in the
small-world network composed of neuronal models was
examined by various authors using the leaky integrate-
and-fire model (Masuda & Aihara, 2004; Netoff et al.,
2004; Roxin, Riecke, & Solla, 2004) and the Hodgkin-
Huxley model (Lago-Fernández et al., 2000; Buzsáki et
al., 2004; Netoff et al., 2004), but the results differ de-
pending on the models and the values of the parame-
ters. In the research on the WS network of excitatory
neurons, it is known that the optimal rewiring probabil-
ity p0 with which the degree of synchronization is maxi-
mized takes various values when regulating the rewiring
probability p. It is reported that p0 � 0.3 (Masuda &
Aihara, 2004), p0 lies in the so-called small-world re-
gion (0.01 ≤ p ≤ 0.1) (Lago-Fernández et al., 2000),
and coherent bursting emerges for p > 0.01 or p > 0.2
(Netoff et al., 2004). One of the reasons for this dis-
crepancy is the difference in the strength of the connec-
tions; the network can have either strong connections
(Lago-Fernández et al., 2000; Netoff et al., 2004; Roxin,
Riecke, & Solla, 2004) or weak connections (Masuda &
Aihara, 2004). Moreover, the differences between the
neuron models would also affect the values of p0 because
the property of synchronization of the excitatory neurons
depends on the specific neuron models used (Abbott &
van Vreeswijk, 1993).

On the other hand, it is known in networks of in-
hibitory neurons that the degree of synchronization in-
creases by increasing the number of neurons with long-
range connections. It is suggested that the inhibitory
neurons play an important role in the generation of
rhythm of the brain (Buzsáki et al., 2004). This finding
coincides with the report that the inhibitory neurons are
easy to synchronize (van Vreeswijk, Abbott, & Ermen-
trout, 1994).

Even if the inhibitory neurons are important for the
generation of rhythm in the brain, it is thought that the
excitatory neurons also contribute to its mechanism be-
cause the number of inhibitory neurons with long-range
connections is small, and inhibitory neurons with both
long-range and short-range connections have yet to be
found (Buzsáki et al., 2004). Kitano & Fukai (2007) ex-
amined the dynamics of networks composed of excitatory
and inhibitory neurons, whose structures are obtained
by rewiring the connections of a local network with the
rewiring probability p. The values of the parameters of
their network were chosen so that the neurons do not
show synchronous oscillations at p = 1. The present pa-

per investigates the dynamics of a similar network and
examines the dependence of the synchronization on the
network structure, but we set the parameters of the net-
work to show synchronous oscillations at p = 1 because
we wish to clarify whether the synchronous oscillations
persist even for small p.

In section 2, a pulse-coupled neural network com-
posed of excitatory and inhibitory neurons is defined.
Both types of neurons have connections through chemi-
cal synapses, and the inhibitory neurons also have elec-
trical synapses with gap junctions. Watts-Strogatz’s
rewiring is introduced to the connections by the chemical
synapses. In section 3, the dependence of the synchro-
nization on the rewiring probability is examined. The
final section provides discussion and conclusions.

2 Network of excitatory and in-

hibitory neurons

In the following, a pulse-coupled neural network com-
posed of excitatory and inhibitory neurons arranged in
a two-dimensional array is considered. An excitatory
neuron and an inhibitory neuron are placed at the point
(i, j) (1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny) in the array, and the
number of neurons in the excitatory ensemble and the
inhibitory ensemble is NxNy. The dynamics of the in-
ternal states θ

(i,j)
E of the excitatory neuron and θ

(i,j)
I of

the inhibitory neuron at (i, j), are written as

τX
˙

θ
(i,j)
X = (1 − cos θ

(i,j)
X ) + (1 + cos θ

(i,j)
X )

×(rX + ξ
(i,j)
X (t) + gXEI

(i,j)
XE (t)

−gXII
(i,j)
XI (t) + ggapδXII

(i,j)
gap (t)), (2.1)

I
(i,j)
XY (t) =

1

2#A
(i,j)
cXY

∑
(m,n)∈A

(i,j)
cXY∑

l

1
κY

exp

(
− t − t

(m,n)
l

κY

)
, (2.2)

I(i,j)
gap (t) =

1

#A
(i,j)
g

∑
(m,n)∈A

(i,j)
g

sin
(
θ
(m,n)
I (t) − θ

(i,j)
I (t)

)
, (2.3)

〈ξ(i,j)
X (t)ξ(m,n)

Y (t′)〉 = DδXY δimδjnδ(t − t′),(2.4)

where X = E or I, and δij is Kronecker’s delta (Er-
mentrout, 1996; Izhikevich, 1999; Kanamaru & Aihara,
2008). Although the number of excitatory neurons in the
cortex is much larger than that of inhibitory neurons, we
set both numbers identical for simplicity. Moreover, as
shown in equations 2.2 and 2.3, the synaptic strengths
are divided by the number of connected neurons; there-
fore, the dynamics of the network do not depend on the
number of neurons if there is a sufficiently large number
of neurons. The connections through chemical synapses
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are modeled by the postsynaptic potential with an expo-
nential function, and electrical synapses with gap junc-
tions based on the physiological observations (Galarreta
& Hestrin, 2001) are introduced to the connections be-
tween the inhibitory neurons. The electrical synapse cor-
responds to the diffusive coupling in the physical system;
therefore, it can induce the synchronization in the neu-
ral system (Ermentrout, 2006). I

(i,j)
XY denotes the inputs

by the chemical synapses from the ensemble Y to the
neuron at (i, j) in the ensemble X . A

(i,j)
cXY denotes a set

of indices at which there is a neuron in the ensemble Y ,
which connects to the neuron at (i, j) in the ensemble
X . #A

(i,j)
cXY is the number of elements of this set. t

(m,n)
l

denotes the lth firing time of the neuron at (m, n) in the
ensemble Y , and it is defined by the time at which θ

(m,n)
Y

exceeds π. I
(i,j)
gap (t) is the input by the electrical synapses.

A
(i,j)
g denotes the set of indices at which there is a neu-

ron that connects to the target neuron through electrical
synapses. rX denotes the parameters of the neurons in
ensemble X , and it can also be regarded as a constant
input to the neuron which starts to fire with rX = 0 as
shown below. Without Gaussian white noise ξ

(i,j)
X (t) and

input I
(i,j)
XY , a single neuron shows self-oscillation when

rX > 0. When rX < 0, this neuron becomes an excitable
system with the following stable equilibrium:

θ0 = − arccos
1 + rX

1 − rX
, (2.5)

in which θ0 approaches zero for rX ∼ 0. In the fol-
lowing, we set rE = rI = −0.025, and we consider the
dynamics of networks of excitable neurons. As shown
in equation 2.2, the strength of the synaptic connections
is divided by the number of connected neurons which is
112 in this study as shown below; therefore many spikes
are required to make the target neuron emit a spike. In
contrast, other WS networks use stronger synaptic con-
nections than ours so that a much smaller number of
inputs ranging from 1 to 20 can make the target neuron
emit a spike (Lago-Fernández et al., 2000; Masuda & Ai-
hara, 2004; Netoff et al., 2004; Roxin, Riecke, & Solla,
2004). It is known that the mean EPSP amplitude is 0.55
mV in the rat visual cortex (Mason, Nicoll, & Stratford,
1991), and 1.67 mV in the rat motor cortex (Thomson,
Deuchars, & West, 1993). In both cases, the amplitudes
are highly variable ranging from 0.05 to 2.08 mV in the
visual cortex and ranging from 0 to 9 mV in the motor
cortex, and the most of the amplitudes are less than 0.5
mV (Mason, Nicoll, & Stratford, 1991). Therefore, when
the difference between the threshold and the resting po-
tential is 10 mV, the number of EPSPs to generate an
action potential for one neuron would range from 1 to
200. Our assumption on the EPSP amplitude is in this
range.

The sets of indices for connections A
(i,j)
cXY and A

(i,j)
g

are defined as follows. First, we define a set A(i,j)(p, k),
where p is the probability of the rewiring of connections
and k scales the connection length. For p = 0, A(i,j)(0, k)

is defined as a set of indices for local connections, namely,

A(i,j)(0, k) =
{

(m, n)
∣∣∣∣1 ≤ d(i, j, m, n) ≤ k

2

}
,

(2.6)
d(i, j, m, n) = |i − m| + |j − n|, (2.7)

where the connections in both directions exist between
two neurons at (i, j) and (m, n), and a periodic bound-
ary condition is applied, namely, the point at (i′, j′)
with arbitrary integers i′ and j′ is identical with the one
at (i′ mod Nx, j′ mod Ny). In the following, we set k
even, then the number of elements can be calculated as
#A(i,j)(0, k) = k(k + 2)/2. A(i,j)(p, k) is obtained from
A(i,j)(0, k) by the standard method (Watts & Strogatz,
1998), namely, by rewiring each connection of A(i,j)(0, k)
randomly with probability p. The connections through
the electrical synapses are always considered to be lo-
cal, namely, A

(i,j)
g = A(i,j)(0, k). The rewiring is in-

troduced to the connections by the chemical synapses
from the excitatory neurons, namely, A

(i,j)
cXE = A(i,j)(p, k)

(X = E, I). Generally, the connections from the in-
hibitory neurons are considered to be local, but recently,
a possible role of inhibitory neurons with long-range
connections is examined (Buzsáki et al., 2004). There-
fore, this paper considers two networks, namely, the E-
rewiring network in which the connections by the chem-
ical synapses from the inhibitory neurons are local, that
is,

A
(i,j)
cXI = A(i,j)(0, k) (X = E, I), (2.8)

and the E, I-rewiring network in which the rewiring
is also introduced to the connections by the chemical
synapses from the inhibitory neurons, that is,

A
(i,j)
cXI = A(i,j)(p, k) (X = E, I). (2.9)

In the following, a network with Nx = Ny = 100 and
k = 14 is used. The parameters are set as gEE = gII ≡
gint and gEI = gIE ≡ gext for simplicity. Kanamaru &
Aihara (2008) analyzed the dependence of synchroniza-
tion only on gEE, gII , gEI , or gIE in the global network
that corresponds to our model with p = 1 and found
that the synchronous firing exists only in some range of
gEE , gII , gEI , and gIE . Moreover, the time constants of
the internal dynamics and the synaptic transmission are
set to τE = 1, τI = 0.5, κE = 1, and κI = 5. This net-
work is sparse because the number of connections to the
neuron at (i, j) is calculated to be #A(i,j)(0, 14) = 112.
As shown in Figure 1, the average shortest path length
L(p) and the clustering coefficient C(p) in this network
can be numerically calculated to be L(p)/L(0) ∼ 0.4 and
C(p)/C(0) > 0.7 in the range 0.01 ≤ p ≤ 0.1; there-
fore, the network exhibits the small-world properties,
i.e., small L and large C, in this range.
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Figure 1: The average shortest path length L(p) and
the clustering coefficient C(p) in our two dimensional
network. It is observed that L(p)/L(0) ∼ 0.4 and
C(p)/C(0) > 0.7 in the range 0.01 ≤ p ≤ 0.1; there-
fore, the network exhibits the small-world properties,
i.e., small L and large C, in this range.

3 Effect of rewiring on synchro-
nization

In the following, the parameters are set to ggap = 0.10,
gint = 5, gext = 3.2, and D = 0.004 so that this net-
work shows synchronous firing for p = 1 (Kanamaru &
Aihara, 2008) because we wish to clarify whether the
synchronous firing persists even for small p. In Figures
2 and 3, the firing of neurons in the E-rewiring network
with p = 0.6 and p = 0.8 is shown, respectively. Fig-
ures 2A, 2C, 3A, and 3C show the firing rates JE and JI

of the excitatory and inhibitory ensemble, which are de-
fined as an average instantaneous firing rate of a neuron,
namely,

JX(t) ≡ 1
NxNyw

∑
(i,j)

∑
l

Θ(t − t
(i,j)
l ), (3.1)

Θ(t) =
{

1 for 0 ≤ t < w
0 otherwise , (3.2)

where w = 1. The small fluctuations in JE and JI

for p = 0.6 indicate that the firing of neurons is asyn-
chronous. On the other hand, the temporal changes of
JE and JI for p = 0.8 indicate that there is synchroniza-
tion of neuronal firing within each class and correlation
between the firing of inhibitory and excitatory neurons;
we refer to such firing as globally synchronous firing. The
raster plots of the firing of neurons in Figures 3B and 3D
for p = 0.8 show almost uniform synchronous firing. It
is also shown that the degree of synchronization in the
inhibitory ensemble is stronger than that in the excita-
tory ensemble. The trajectory of JE and JI for p = 0.8
forms a noisy limit cycle in the (JE , JI) plane as shown
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Figure 2: The firing of neurons in the E-rewiring network
with p = 0.6, Nx = Ny = 100, k = 14, ggap = 0.10,
gint = 5, gext = 3.2, and D = 0.004. (A), (C) Temporal
changes of the firing rates JE and JI of the excitatory
and inhibitory ensemble. (B), (D) The corresponding
raster plots of the firing of neurons. The firing of 30
neurons among 10000 neurons in each ensemble is shown.
The index of the neuron at (i, j) is calculated as jNx + i.

in Figure 4B. In contrast, that of JE and JI for p = 0.6
fluctuates around an equilibrium because there is little
correlation among the firing spikes of neurons for p = 0.6
(see Figure 4A).

To quantify the degree of synchronization among the
firing spikes of neurons, we use the standard deviation
S(JX ; p) of JX(t) (X = E or I) over time, defined as

〈JX〉 =
1
T

∫ T

0

JX(t)dt, (3.3)

〈J2
X〉 =

1
T

∫ T

0

JX(t)2dt, (3.4)

S(JX ; p) =
√
〈J2

X〉 − 〈JX〉2. (3.5)

Typically, the time interval of T is chosen 1000, and
larger values such as T = 3000 or 6000 are used when p is
close to p0. When S(JX ; p) is large, the synchronous fir-
ing of neurons is observed. The dependence of S(JE ; p)
on the rewiring probability p and a fitted curve with
A tanh(β(p−p0))+ δ are shown in Figure 4C. There is a
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Figure 3: The firing of neurons in the E-rewiring network
with p = 0.8, Nx = Ny = 100, k = 14, ggap = 0.10,
gint = 5, gext = 3.2, and D = 0.004. (A), (C) Temporal
changes of the firing rates JE and JI of the excitatory
and inhibitory ensemble. (B), (D) The corresponding
raster plots of the firing of neurons. The firing of 30
neurons among 10000 neurons in each ensemble is shown.
The index of the neuron at (i, j) is calculated as jNx + i.

transition probability p0 at which S(JE ; p) shows a sharp
transition. S(JI ; p) also shows a similar transition at p0

(data not shown). This sharp transition is a property
of this network composed of excitatory and inhibitory
neurons. The network composed only of inhibitory neu-
rons shows a gradual increase (Buzsáki et al., 2004) of
S(JI ; p) (data not shown). The averages of JE and JI

over time, 〈JE〉 and 〈JI〉, are shown in Figure 4D. As
shown later, 〈JI〉 plays an important role for the emer-
gence of the synchronous firing, but the dependence of
〈JI〉 on the rewiring probability p is not significant in
this figure. Namely, when changing p, the average fir-
ing rate of the inhibitory neurons 〈JI〉 maintains almost
constant values, and only the correlation among the fir-
ing spikes of neurons changes. Although 〈JE〉 slightly
changes with variations in p, its dependence on p is not
large.

The dependence of p0 on the inter-ensemble connec-
tion strength gext is shown in Figure 5A. Three val-
ues of the connection strength of the electrical synapses,
ggap = 0, 0.1, and 0.3, both for the E-rewiring and the
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Figure 4: The trajectories of JE and JI in the E-rewiring
network for (A) p = 0.6 and (B) p = 0.8. The values of
the other parameters are identical with those of Figures
2 and 3. (C) The dependence of S(JE ; p) on the rewiring
probability p. A fitted curve A tanh(β(p − p0)) + δ with
A = 0.0260, β = 43.3, p0 = 0.707, and δ = 0.0329 is also
shown. (D) The dependence of 〈JE〉 and 〈JI〉 on p.

E, I-rewiring networks are investigated. Note that in the
network with ggap = 0, p0 does not exist for gext > 3.6
because globally synchronous firing does not exist in this
range (Kanamaru & Aihara, 2008). The number of data
points for gext < 2.5 is small because the data were insuf-
ficient for fitting A tanh(β(p− p0))+ δ to S(JE ; p) when
p0 is close to 0, and fitting becomes difficult due to the
small magnitude of A. Typically, it is observed that p0

in the E, I-rewiring network is smaller than that in the
E-rewiring network because the number of the rewired
connections is larger in the E, I-rewiring network, and
the large number of rewirings tends to break the local
synchronization in favor of the global synchronization.

To understand Figure 5A, let us divide the range of
gext into two parts, namely, small gext (gext < 3.3) and
large gext (gext ≥ 3.3). For small gext, smooth changes of
p0 are observed, and for large gext, p0 changes drastically.
In order to examine the dynamics of the network, the
dependences of 〈JI〉 at p = 1 and p = 0 on gext are shown
in Figures 5B and 5C, respectively. 〈JI〉 at p = 1 reflects
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Figure 5: (A) The dependence of the transition proba-
bility p0 on the inter-ensemble connection strength gext.
The dependence of 〈JI〉 on gext (B) at p = 1 and (C)
at p = 0. 〈JI〉 at p = 0 is common to both the E-
rewiring network and the E, I-rewiring network because
both networks have only local connections for p = 0.

the shape of the noisy limit cycle (Figure 4B), and 〈JI〉
at p = 0 shows the properties of the asynchronous state
(Figure 4A). As shown in Figures 5B and 5C, 〈JI〉 at p =
1 and p = 0 have similar values for small gext, but they
largely differ for large gext, suggesting that the properties
of the dynamics differ in two ranges of gext. Actually, in
this network, the properties of synchronous firing depend
both on the rewiring probability p and on the parameters
of the network such as gext, gint, and D, and for large
gext, it is known that complex dynamics such as chaotic
synchronization and weakly synchronous firing exist at

p = 1 (Kanamaru & Aihara, 2008). Therefore, we must
examine the behavior of the network in the two ranges
of gext separately. In the following, we focus mainly on
the analysis of the network with small gext (gext < 3.3).

In the E, I-rewiring network with small gext, it is ob-
served in Figure 5A that a larger ggap makes the transi-
tion probability p0 larger, which is necessary to break the
local synchronization created by the electrical synapses.
Moreover, in both networks, p0 tends to decrease as
gext decreases for gext < 3.3. In other words, glob-
ally synchronous firing emerges with a small number of
rewirings when gext is small. By decreasing gext fur-
ther (e.g., gext < 2.3), globally synchronous firing is ob-
served even when p = 0. This phenomenon can be ex-
plained as follows. When gext is decreased, the average
firing rate 〈JE〉 increases similarly to 〈JI〉 shown in Fig-
ure 5C. When 〈JE〉 is large, the inhibitory neurons be-
come self-oscillating, and it is known that the network of
self-oscillating inhibitory neurons are easy to synchronize
(van Vreeswijk, Abbott, & Ermentrout, 1994); therefore,
inhibitory neurons with large 〈JI〉 in our network show
synchronous firing without rewiring, and globally syn-
chronous firing appears. Based on the above discussion,
it can be inferred that the average firing rate 〈JI〉 of the
inhibitory ensemble might play an important role in the
generation of globally synchronous firing. Therefore, in
Figure 6, p0 is plotted as a function of 〈JI〉 at p = 0.
In both networks, it is observed that p0 approaches 0 at
〈JI〉 � 0.09, and for 〈JI〉 > 0.09, globally synchronous
firing is observed in the network without rewiring. In
particular, the graphs for three values of ggap overlap
each other around 〈JI〉 = 0.09 in the E, I-rewiring net-
work. We plotted p0 as a function of other variables,
e.g., 〈JE〉 or 〈JE〉 + 〈JI〉, but such an overlap of three
graphs was not observed. These observations mean that
p0 is determined only by 〈JI〉 in the E, I-rewiring net-
work, and its dependence on ggap is weak in this range.
This is because the rewiring of the connections by the
chemical synapses among inhibitory neurons dominates
the effect of the electrical synapses. In the E-rewiring
network, the graphs for three values of ggap are not com-
pletely coincident because the connections through the
chemical synapses among the inhibitory neurons are lo-
cal, therefore, the effect of the electrical synapses is rel-
atively large.

Next, let us consider the dynamics of the network
for large gext. As shown in Figure 5A, changes in ggap

largely affect the dynamics of networks with large values
of gext, and this behavior is also observed for small 〈JI〉
in Figure 6. This is because the electrical synapses can
transmit information even when there is no firing, and
their effect is strengthened relatively when the firing rate
of neurons is small. Moreover, it is known that complex
dynamics such as chaotic synchronization and weakly
synchronous firing exist for large gext at p = 1 (Kana-
maru & Aihara, 2008). When the emerged synchronous
firing is chaotic, this transition would be caused by bi-
furcations to chaos such as successive period doubling
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Figure 6: The dependence of p0 on 〈JI〉 for (A) the E-
rewiring network and (B) the E, I-rewiring network. The
data for both networks are shown again in (C). The val-
ues of 〈JI〉 at p = 0 are used (see Figure 4D). In both net-
works, it is observed that p0 approaches 0 at 〈JI〉 � 0.09.
Moreover, for large 〈JI〉 � 0.09, it is observed that p0 is
determined only by 〈JI〉, and its dependence on ggap is
weak in this range.

bifurcations. The bifurcation point that relates to chaos
(i.e., p0) does not necessarily change smoothly when the
values of the parameters (i.e., gext and ggap) is changed.
Therefore, the dependence of p0 on large gext (small 〈JI〉)
is different from that for small gext (large 〈JI〉). Further
analysis of such complex dynamics is the subject of our
future studies.

4 Conclusion

In the E-rewiring network with rewired connections of
excitatory chemical synapses and in the E, I-rewiring
network with the rewired connections of excitatory and
inhibitory chemical synapses, the conditions for the ex-
istence of globally synchronous firing were investigated.
We used the values of the parameters with which the net-
work shows synchronous oscillations in the random net-
work because we wish to clarify whether the synchronous
oscillations persist even for small rewiring probabilities.
In both networks, when the firing rate 〈JI〉 of the in-
hibitory ensemble is large, it was observed that the tran-
sition probability p0 of the rewiring becomes small with
increasing 〈JI〉. In particular, in the E, I-rewiring net-
work, the dependence of p0 on the strength of the elec-
trical synapses was weak, when 〈JI〉 is large, and p0 de-
creases with the increase of 〈JI〉. However, when 〈JI〉
is small, the dependence of p0 on the strength of the
electrical synapses was significant because the electri-
cal synapses can transmit information even when there
is no firing. In the neural systems, it is known that the
electrical synapses are widely observed among inhibitory
interneurons. Therefore, our results suggest that the in-
hibitory neurons play an important role in maintaining
stable synchronous firing irrespective of their firing rates.

In this paper, we analyzed the dependence of the tran-
sition probability p0 on the parameters of the system,
and it was found that p0 takes small values, including
the values in the small-world region (see Figs. 1 and 5A),
when the system is close to the critical point to gener-
ate the global synchrony (i.e., gext � 2.5 in our model
as shown in Fig. 5A). Similar results were obtained in
some previous works (Barahona & Pecora, 2002; Hong,
Choi, & Kim, 2002). All the networks treated in these
works show global synchronization at p = 1. On the
other hand, in some networks, the dependence of p0 on
the values of the parameters is not so much clear (Lago-
Fernández et al., 2000; Masuda & Aihara, 2004; Netoff et
al., 2004; Roxin, Riecke, & Solla, 2004; Kitano & Fukai,
2007). It is a future work to understand the relationship
between the above two groups of studies.

As for the roles of the inhibitory neurons in synchro-
nization, it has already been known that the inhibitory
neurons play important roles to generate synchrony in
the network both in theoretical studies (van Vreeswijk,
Abbott, & Ermentrout, 1994; White et al., 1998; Lewis
& Rinzel, 2003; Nomura, Fukai, & Aoyagi, 2003) and in
the experimental studies (Buzsáki et al., 2006). Based
on these findings, we analyzed the dynamics of networks
composed of both excitatory neurons and inhibitory neu-
rons. A similar network has already been analyzed by
Kitano & Fukai (2007), but, to our knowledge, this is the
first report to show that the network topology required
for the generation of synchrony is determined mainly by
the dynamics of the inhibitory neurons.
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