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Abstract

We propose a pulse neural network that exhibits chaotic pat-
tern alternations among stored patterns as a model of multi-
stable perception, which is reflected in phenomena such as
binocular rivalry and perceptual ambiguity. When we re-
garded the mixed state of patterns as a part of each pattern,
the durations of the retrieved pattern obey unimodal distribu-
tions. We confirmed that no chaotic properties are observed
in the time series of durations, consistent with the findings
of previous psychological studies. Moreover, it is shown that
our model also reproduces two properties of multistable per-
ception that characterize the relationship between the con-
trast of inputs and the durations.

1 Introduction

In the perception of visual information, multistable percep-
tion is a well known phenomenon. For example, when two
different stimuli are presented to the eyes, the dominant stim-
ulus perceived fluctuates over time, a phenomenon known as
binocular rivalry (Levelt, 1967; Walker, 1975; Lehky, 1995;
Blake, 2001). Similarly, when an ambiguous figure such as
a Necker cube is presented, the dominant interpretation also
fluctuates over time (Borsellino et al., 1972; Alais & Blake,
2015). Research has also indicated that the duration of the
dominant perception (dominance duration) may be charac-
terized by a unimodal distribution, such as the gamma distri-
bution (Levelt, 1967; Borsellino et al., 1972; Walker, 1975)
or the log-normal distribution (Lehky, 1995).

Although many theoretical models have been proposed,
the mechanism of such multistable perception is still un-
known (Lehky, 1988; Laing & Chow, 2002; Wilson, 2003;
Freeman, 2005; Wilson, 2007). Typical models assume that
the rivalry takes place between the two eyes, or the two
monocular pathways (“eye rivalry”) (Lehky, 1988; Wilson,
2007). Such models are composed of two oscillators with
reciprocal inhibitions, and the stochastic properties are in-
troduced to the model by adding noise (Lehky, 1988). One
possible mechanism for such noise would be associated with
fluctuation in the visual system, which is generated by small

eye movements and microsaccades. Laing & Chow (2002)
suggested that randomness in their model is caused not by
noise but by deterministic chaos inherent in the network.

The eye rivalry is thought to take place between monocu-
lar neurons within the primary visual cortex. However, Lo-
gothetis et al. (1996) found that neurons whose activity cor-
relates with rivalry were in higher cortical areas. In their ex-
periment, the two stimuli presented to the eyes were swapped
every 330 ms. Even under such a condition, the results typ-
ical of the binocular rivalry were found, and the mean dom-
inance time of one pattern was 2,350 ms, which is much
longer than the swap time of 330 ms. Their results can be
interpreted that in higher cortical areas, rivalry takes place
between two patterns presented to the eyes (pattern rivalry).
Their results show that the pattern rivalry can be modeled
using a hierarchical model with two rivalry stages (Wilson,
2003), each of which shows the eye rivalry and the pattern
rivalry, respectively. However, a multistage model does not
always show the pattern rivalry (Freeman, 2005); therefore,
the mechanism of the pattern rivalry is still controversial.

As for such pattern rivalry in the multistable percep-
tion, there is related research (Leeuwen et al., 1997; Na-
gao et al., 2000). Leeuwen et al. (1997) examined a net-
work of the logistic map that yields chaotic dynamics and
observed chaotic switching between synchronous state and
asynchronous state. Moreover, the distribution of interswitch
period between each state was found to be unimodal. Al-
though it is attractive to relate their model to the multistable
perception, their model is an abstract one and not based on
the knowledge of neuroscience.

Nagao et al. (2000) stored 20 binary patterns in a neu-
ronal network and regarded two patterns as the perceived
states. In this network, the retrieved pattern fluctuates chaot-
ically between two patterns. This dynamics is understood
in the literature of the chaotic associative memory model in
which the state of the network changes chaotically among
several patterns (Aihara, Takabe, & Toyoda, 1990; Inoue &
Nagayoshi, 1991; Nara & Davis, 1992; Tsuda, 1992; Adachi
& Aihara, 1997). Typically the duration of a pattern in the
chaotic associative memory model does not obey a unimodal
distribution, but it often obeys a monotonically decreasing
distribution (Tsuda, 1992). However, the model in Nagao
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et al. (2000) successfully reproduces a unimodal distribution
of dominance duration.

In the study presented in this letter, we report that the pat-
tern alternations caused by chaotic dynamics of a pulse neu-
ral network can also reproduce the properties of multistable
perception. This network is composed of neuronal models
that emit spikes when a sufficiently strong input is injected,
while the previous models of chaotic associative memory
were composed of conventional neuronal models based on
firing rates. In our network, the durations of the retrieved pat-
tern obey unimodal distributions when we regard the mixed
state of patterns as part of each pattern. Moreover, although
the pattern alternations are caused by chaotic dynamics, the
chaotic properties are not detected in the series of the du-
rations of the retrieved pattern. Therefore, our results are
consistent with Lehky (1995), who stated that the statistical
properties of binocular rivalry are not chaotic. Moreover,
we show that our model can reproduce two characteristics
of binocular rivalry. First, when reducing the contrast of a
stimulus to one eye, dominance intervals in the other eye
increase and dominance intervals in the stimulated eye are
relatively unchanged (Laing & Chow, 2002; Wilson, 2007).
Second, when increasing the contrast of the stimuli to both
eyes, dominance intervals in both eyes decrease (Laing &
Chow, 2002; Wilson, 2007).

This letter is organized as follows. In section 2, we de-
fine a pulse neural network composed of excitatory neurons
and inhibitory neurons exhibiting synchronized, chaotic fir-
ing. In the subsequent sections, we refer to this network as
the one-module system. In section 3, we connect eight mod-
ules of networks in which two patterns are stored according
to the mechanism of associative memory. These two pat-
terns correspond to the two stable states of binocular rivalry
and perceptual ambiguity. We further show that chaotic dy-
namics are responsible for alterations in the retrieved pat-
terns over time. In section 4, we show that the durations
of the retrieved pattern obey unimodal distributions. In sec-
tion 5, we examine the dependences of the peak position of
the unimodal distribution on the connection strengths and the
number of patterns. In section 6, we show that chaotic prop-
erties are not detected in the series of the durations of the
retrieved pattern. In section 7, we show that our model can
reproduce two characteristics of binocular rivalry. Section 8
concludes.

2 One-module system

In sections 2 and 3, we introduce a neural network of theta
neurons with phases as their internal states (Ermentrout &
Kopell, 1986; Ermentrout, 1996; Izhikevich, 1999, 2000;
Kanamaru & Sekine, 2005b). When a sufficiently strong in-
put is provided, each neuron yields a pulse by increasing its
phase around a circle and returning to its original phase. The
network is composed of NE excitatory neurons and NI in-

hibitory neurons governed by the following equations:
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where θ(i)E and θ
(i)
I are the phases of the ith excitatory neuron

and the ith inhibitory neuron, respectively. rE and rI are pa-
rameters of the neurons that determine whether the equilib-
rium of each neuron is stable. We used rE = rI = −0.025 to
ensure that each neuron had a stable equilibrium. X = E or
I denote the excitatory or inhibitory ensemble, respectively,
while t

(j)
k is the kth firing time of the jth neuron in the en-

semble X and the firing time is defined as the time at which
θ
(j)
X exceeds π in the positive direction. The neurons com-

municate with each other using the postsynaptic potentials
whose waveforms are the exponential functions, as shown in
equation 2.3. ξ

(i)
X (t) represents gaussian white noise added

to the ith neuron in the ensemble X .
Throughout the remainder of the letter, this network is re-

ferred to as a one-module system that exhibits various pat-
terns of synchronized firing (Kanamaru & Sekine, 2005b).
We utilized the chaotic synchronization shown in Figure 1.
Figure 1A shows a raster plot of spikes of 200 randomly cho-
sen excitatory neurons and inhibitory neurons in a module
with NE = NI = 2000. This plot allows one to observe the
synchronized firing of neurons and that the intervals of syn-
chronized firing do not remain constant. The instantaneous
firing rates JE and JI of the excitatory and inhibitory ensem-
bles calculated from the data used in Figure 1A are shown in
Figure 1B. A trajectory of JE and JI in the (JE , JI) plane
is also shown in Figure 1C, revealing somewhat complex
structures. To analyze these structures, we took the limit of
NE , NI → ∞ in order to obtain the Fokker-Planck equa-
tion, which governs the dynamics of the probability densities
nE(θE) and nI(θI) of θ(i)E and θ

(i)
I , as shown in Appendix A.

JE and JI , obtained from the analysis of the Fokker-Planck
equation, are shown in Figures 1E and 1F. In Figure 1F, a
fine structure of a strange attractor is observed. The largest
Lyapunov exponent of the attractor in Figure 1F is positive
(Kanamaru & Sekine, 2005b), indicating that the dynamics
of JE and JI are chaotic. Moreover, the asynchronous fir-
ings shown in Figure 1D coexist with the chaotic synchro-
nization shown in Figure 1A because each neuron has stable
equilibrium. This coexistence of two states is important for
realizing chaotic pattern alternations.

In the following sections, only the one-module systems
with infinite neurons treated in Figures 1E and 1F are consid-
ered, as the Fokker-Planck equation does not contain noise,
allowing for the reproduction of analyses.
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Figure 1: (A) Chaotic synchronization observed in a module with D = 0.0032, rE = rI = −0.025, gint = 4, and gext =
2.5. Raster plot of spikes of 200 randomly chosen excitatory neurons and inhibitory neurons in a module with NE = NI =
2000 is shown. (B) Temporal changes in instantaneous firing rates JE and JI of the excitatory ensemble and the inhibitory
ensemble, respectively, calculated from the data in panel A. (C) Trajectory in the (JE , JI ) plane. (D) Asynchronous firing
observed in this module. Raster plot of spikes of 200 randomly chosen excitatory neurons and inhibitory neurons in a
module with NE = NI = 2000 is shown. (E, F) Chaotic synchronization in a module with an infinite number of neurons
obtained by analysis with Fokker-Planck equations. The values of parameters are the same as those used in panels A-D. (E)
Temporal changes in the instantaneous firing rates JE and JI . (F) Trajectory in the (JE , JI ) plane.

3 Chaotic pattern alternations ob-
served in multiple modules of net-
work

In this section, we defined a network with multiple modules
(Kanamaru, 2007; Kanamaru, Fujii, & Aihara, 2013). Sev-
eral patterns can be stored in this network according to the
mechanism of associative memory and Hebb’s rule (Hebb,
1949).

A schematic diagram of the one-module system described
in the previous section is shown in Figure 2A. In order to
introduce the connections among multiple modules, we an-
alyzed connections from the excitatory ensembles only, as
shown in Figure 2B. As indicated below, the strengths of in-
termodule connections to the excitatory and inhibitory en-
sembles are scaled by the parameters εEE and εIE , respec-
tively.

The synaptic inputs TEi and TIi injected to the ith exci-

tatory ensemble Ei and the inhibitory ensemble Ii, respec-
tively, are defined as

TEi = (gint − γεEE)IEi − gextIIi +
M∑
j=1

εEijIEj ,(3.1)

TIi = (gext − γεIE)IEi − gintIIi +

M∑
j=1

εIijIEj ,(3.2)

which are composed of both intra-module and intermodule
connections. By replacing the terms IE(t) and II(t) in equa-
tions 2.1 and 2.2 with TEi and TIi in equations 3.1 and 3.2,
a network with multiple modules is defined.
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Figure 2: (A) A schematic diagram of the one-module system composed of NE excitatory neurons and NI inhibitory
neurons. (B) A schematic diagram of the connections among multiple modules. Only the connections from excitatory
ensembles are considered.

The strengths of connections are defined as

εEij =

{
εEEKij if Kij > 0
0 otherwise , (3.3)

εIij = εIE |Kij |, (3.4)

Kij =
1

Ma(1− a)

p∑
µ=1

ηµi (η
µ
j − a), (3.5)

where ηµi ∈ {0, 1} is the stored value in the ith module for
the µth pattern, M is the number of modules, p is the number
of patterns, and a is the rate of modules that store the value
1. The connection strengths defined by equations 3.3 to 3.5
are used in Kanamaru (2007) and Kanamaru, Fujii, & Aihara
(2013) in order to store the patterns composed of 0/1 digits
in a pulse neural network. As previously mentioned, εEE

and εIE scale the strengths of the intermodule connections
to the excitatory and inhibitory ensembles, respectively. In
the following, we set M = 8, p = 2, and a = 0.5.

In the associative memory literature, the Hopfield model
is well known as a model of the memory retrieval (Hopfield,
1982). In the Hopfield model, an energy function whose lo-
cal minimum corresponds to each pattern can be defined, and
the energy monotonically decreases as the system retrieves
the stored pattern successfully. Such dynamics are realized
when the connection matrix is symmetric. However, in our
model, the connection matrix shown in equation 3.5 is asym-
metric; therefore, the energy function cannot be defined in
our network.

Typically, memory patterns are thought to be stored during
the learning process (Hebb, 1949). In this study, we assume
that the patterns have already been stored in the network as
attractors before experiments of rivalry, and we called such
a set of preexisting attractors as attractor landscape (Kana-
maru, Fujii, & Aihara, 2013). By showing the patterns to
the eyes, some existing attractors that are related to the pre-
sented patterns will be activated. It is beyond the scope of
this model to know how such attractor landscape was cre-
ated. Our model examines only the consequences of having
particular sorts of attractor landscapes.

Two patterns stored in the network of eight modules are
defined as

η1i =

{
1 if i ≤ M/2
0 otherwise , (3.6)

η2i =

{
1 if M/4 < i ≤ 3M/4
0 otherwise . (3.7)

In the following, the dynamics of the network are exam-
ined by regulating the intermodule connections εIE , for the
fixed values of parameters γ = 0.6 and εEE = 1.25.

Figure 3A reveals that the pattern 1 is successfully re-
trieved for εIE = 1.75. The changes in the instantaneous
firing rates JEi of the excitatory ensemble in the ith module
are aligned vertically. The initial state of the network deter-
mines the retrieved pattern.

As shown in Figure 3B, the retrieved pattern alters over
time for εIE = 1.68. The analysis of the network is per-
formed with the Fokker-Planck equation, which does not
contain noise because the limit NE , NI → ∞ is taken.
Therefore, the dynamics shown in Figure 3B are not caused
by noise but by chaos that is inherent in the network. This
fact can be confirmed by analysis using Lyapunov spectra
(Kanamaru, 2007).

In order to investigate the retrieved pattern in the network,
it is useful to define the overlap of the network with each pat-
tern, which is similar to the inner product (see appendix B).
The overlaps m1 and m2 with patterns 1 and 2, respectively,
are shown in Figure 3C, which have been calculated using
the data in Figure 3B. Note that mi takes values close to 1
when the ith pattern is retrieved.

Moreover, in Figures 3B and 3C, short bursts are observed
around t ' 1200, 2500, 15000, where the modules that store
the value 1 in pattern 1 or 2 oscillate. Such patterns are re-
ferred to as mixed states in the associative memory literature
(Kimoto & Okada, 2001). Although research has revealed
several types of mixed states such as OR type or AND type,
only the OR type was observed in our network, as shown in
Figure 3B.
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Figure 3: (A) Stable pattern retrieval observed in the network
of eight modules for εIE = 1.75. Note that pattern 1 is suc-
cessfully retrieved. (B) Chaotic pattern alternations observed
for εIE = 1.68. (C) The overlaps m1 and m2 with patterns
1 and 2, respectively.

In order to incorporate the effect of the mixed state into
the duration of each pattern, we defined two durations: mi-
croscopic and macroscopic. As shown in Figure 4, the mixed
state is treated as another pattern in order to examine the mi-
croscopic duration. Therefore, the microscopic duration of
the pattern µ ∈ {1, 2} is defined as the duration in which
mµ > 0.75. On the other hand, when examining the macro-
scopic duration, we regarded that the system retained the
previously retrieved pattern even during the period when
0.5 ≤ m1,m2 < 0.75.

The macroscopic duration is based on the consideration
that the mixed states represent the internal dynamics of the
brain and that these states are thus unobservable in psycho-
logical experiments. Mixed states were always unstable in
the range of εIE in the present study, and their time-averaged
duration was much shorter than those of patterns 1 and 2, as
we will show.

In the following, we discuss both the microscopic duration
and the macroscopic duration.

Figure 4: The explanation of the microscopic duration and
the macroscopic duration.

The dependences of the time-averaged values of the mi-
croscopic and macroscopic durations on the intermodule
connection strength εIE are shown in Figure 5. All values
were calculated using the durations of pattern 1 only, al-
though those of pattern 2 exhibit similar dependence due to
the symmetry of the patterns.

Figure 5: The dependences of time-averaged microscopic
durations and macroscopic durations on the intermodule con-
nection strength εIE .

We observed that the time-averaged durations diverged at
the critical point εIE = ε0 ' 1.75, and monotonically de-
creased with decreases in εIE .

The time-averaged durations of the mixed pattern were al-
ways below 200 and much shorter than those of patterns 1
and 2 (data not shown).

4 Stochastic properties of pattern du-
rations

In this section, we examine the distribution of the duration
of each pattern when chaotic pattern alternations occur.

The distributions of the microscopic durations for εIE =
1.6, 1.64, and 1.68 are shown in Figure 6A. Semi-log plots
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of Figure 6A are also shown in Figure 6B. To calculate the
distributions, the microscopic durations of both patterns 1
and 2 were used. The solid lines represent the fit with the
exponential distribution, and longer durations were associ-
ated with better fit. Moreover, for εIE = 1.6, a good fit was
observed even for small durations, suggesting that pattern al-
ternations become more stochastic as εIE moves away from
the critical point ε0 ' 1.75.

Figure 6: (A) The distribution of the microscopic duration.
(B) Semi-log plots of panel A.

The autocorrelation function of the microscopic durations
is shown in Figure 7A. The series of microscopic durations
is composed by aligning each microscopic duration in order,
including the durations of the mixed state. The oscillating
component of the autocorrelation function is caused by the
fact that the microscopic durations tend to take small values
and large values alternately, which correspond to the short
durations of the mixed states and the long durations of pat-
tern 1 or 2. In Figure 7A, it is also observed that the oscil-
lating component decreases with the decrease of εIE because
the long durations of pattern 1 or 2 decrease and they become
comparable to the short durations of the mixed states.

The distributions of the macroscopic durations under iden-
tical conditions with Figure 6 are shown in Figure 8. The

Figure 7: Autocorrelation functions of (A) microscopic du-
rations and (B) macroscopic durations.

solid lines in Figure 8A show the fit with the gamma distri-
bution, and the solid lines in Figure 8B show that with the
log-normal distribution.

In Figure 8A, the fit with the gamma distribution
βαTα−1e−βT /Γ(α) is good for εIE = 1.6, where Γ(α) is
the gamma function with argument α. Note that the fit for
large εIE is not good because the decay of the distribution for
longer durations is slow for large εIE . This fact also seems
to imply that the system with small εIE is more stochastic,
as the sum of random variables that obey the exponential dis-
tribution obeys the gamma distribution (Murata et al., 2003).

More specifically, the sum of Ti (i = 1, 2, · · · , α) each
of which obeys the exponential distribution with the rate pa-
rameter β obeys the gamma distribution with α and β. In
Murata et al. (2003), α tended to take natural numbers. The
authors proposed that there would be some “distinct states”
between two rivalrous states, and the system has to transit
such distinct states α times in order to reach the rivalrous
states. In our model, the times of passing the mixed states are
not fixed but variable (see the data at t ' 2500 in Figure 4).
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Figure 8: Distributions of the macroscopic durations. (A)
The solid lines indicate the fit with the gamma distribution.
(B) The solid lines indicate the fit with the log-normal distri-
bution.

It would be interesting to check whether α is a natural num-
ber in our model. The parameters (α, β) for gamma distri-
butions in Figure 8A are (1.66, 0.00158), (1.23, 0.000498),
and (0.94, 0.0001) for εIE = 1.60, 1.64, and 1.68, respec-
tively. The parameter value α = 1.66 for εIE = 1.60 seems
to indicate that both the direct transition to another pattern
(α = 1) and the transition passing the mixed pattern once
(α = 2) exist.

In Lehky (1995), the dominant durations of binocular ri-
valry follow a log-normal distribution. Similarly, the distri-
bution of the macroscopic durations in our system also fol-
lows a log-normal distribution, as shown in Figure 8B.

The autocorrelation function of the macroscopic durations
is shown in Figure 7B. The series of macroscopic durations
is composed by aligning the macroscopic durations of pat-
tern 1 and pattern 2 in order. The autocorrelation function
indicates that the macroscopic durations do not have any se-
quential dependence, which is consistent with psychological
experiments (Walker, 1975).

In summary, the macroscopic durations are more appropri-
ate than microscopic durations as models of the dominance
durations of binocular rivalry and perceptual ambiguity.

5 Peak position of the distribution

Previous psychological research has revealed that the domi-
nance duration that gives the peak of the distribution ranges
from 0.8 s to 10 s, depending on the individual participant
(Levelt, 1967; Borsellino et al., 1972; Walker, 1975; Lehky,
1995; Blake, 2001). In this section, we examine the origin of
this variability of the peak position Tp.

First, careful observation of Figure 8 shows that Tp

slightly depends on the intermodule connection strength εIE .
Second, it is expected that Tp would become large when the
number of the mixed states increases because the network
will pass many mixed states before it moves from one pattern
to another. To confirm this expectation, we add the third pat-
tern to the network by setting the number of patterns p = 3
in equation 3.5 and defining the third pattern as

η3i =

{
1 if i mod 2 = 1
0 otherwise . (5.1)

As shown in Figure 9, the number of mixed states are six
for p = 3. Similarly to the case with p = 2, we define the
macroscopic duration of the µth pattern as the time during
which mµ ≥ 0.5 is satisfied.

The dependences of Tp on the intermodule connection
strength εIE in the network with p = 2 and p = 3 are
shown in Figure 10, which is calculated for the fit with the
log-normal distribution of the macroscopic durations.

Figure 10: The dependences of the macroscopic duration Tp

that gives the peak of distribution on εIE in the networks
with p = 2 and p = 3.

It is observed that Tp in the network with p = 3 is larger
than that in the network with p = 2. Moreover, for both
p = 2 and p = 3, it is observed that Tp increases with the
increase of εIE .
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Figure 9: The relationships among three patterns and their mixed states.

6 Chaotic properties of pattern dura-
tions

Lehky (1995) reports that the series of dominance durations
is not chaotic. In this section, we examine the chaotic prop-
erties of the chaotic pattern alternations.

In order to examine the chaotic properties of the series
of dominance durations, Lehky (1995) used the correlation
dimension and the time series prediction based on recon-
struction. Moreover, Lehky also used the surrogate data of
the original data when calculating the correlation dimension
and the time series prediction error to discriminate chaos and
stochastic processes (Theiler et al., 1992).

In this study, we use only the time series prediction based
on reconstruction for the original and surrogate data, because
it is known that calculating correlation dimension requires a
large number of data to obtain reliable results (Smith, 1988;
Ruelle, 1990). Although Lehky (1995) examined the depen-
dence of the time series prediction error on the embedding
dimension, we examine its dependence on the prediction step
to check the existence of the sensitive dependence on the ini-
tial conditions that is typical of chaos (Kanamaru & Sekine,
2005a).

Although we examine only the network with p = 2, simi-
lar results are observed also in the network with p = 3.

In the time series prediction based on reconstruction (de-
tailed in appendix C), some surrogate data are generated
from the original time series under certain null hypotheses so
that the new time series preserve some statistical properties
of the original data. In the study presented in this letter, we
used two types of surrogates, random shuffled (RS) and am-
plitude adjusted Fourier transformed (AAFT) surrogate data,
which correspond to the null hypothesis of an independent
and identically distributed random process and that of a lin-
ear stochastic process observed through a monotonic nonlin-
ear function, respectively.

We then calculated the nonlinear prediction error ENP (h)
for the prediction step h for both the original and surrogate
data. If ENP (h) for the surrogate data is significantly dif-
ferent from that of the original data, the null hypothesis is
rejected, and it can be concluded that there is some possibil-
ity that the original time series has deterministic properties,
such as strange attractors. On the other hand, if ENP (h) for
the surrogate data exhibits no significant difference from that
of the original data, the null hypothesis is not rejected, and
the original data can be regarded as being generated from
some stochastic process.

ENP (h) for the microscopic durations is shown in Fig-
ures 11A and 11B. The examined time series {Ti} is identi-
cal to that used in Figure 7A. As shown in Figure 11A, for
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Figure 11: The dependence of the nonlinear prediction error ENP (h) on prediction step h for the time series of (A, B)
the microscopic durations, and (C, D) the macroscopic durations. The return plots of {Ti} in the (Ti, Ti+1) plane are also
shown in the insets. In panels A, C, and D, ENP (h) of the RS and AAFT surrogate data are not significantly different from
those of the original data. In panel B, ENP (h) of the RS and AAFT surrogate data are significantly different from those of
the original data, although this is due to alternations between small values and large values.

εIE = 1.6, ENP (h) of the RS and AAFT surrogate data
exhibit no significant difference from those of the original
data. Therefore, the time series of microscopic durations for
εIE = 1.6 is regarded as being generated by some stochastic
process. This finding supports our previous observation that
the microscopic durations for εIE = 1.6 seem to be stochas-
tic. We also observed no deterministic structures in the return
plot of the time series {Ti}.

As shown in Figure 11B, for εIE = 1.68, ENP (h) of
the RS and AAFT surrogate data exhibit significant differ-
ences from those of the original data. This finding suggests
that there are some deterministic structures in the original
time series {Ti}, but that such deterministic structures are
not caused by chaos for two reasons. First, if there is chaos in
the time series, the nonlinear prediction error ENP (h) would
increase with increases in the prediction step h because of

the sensitive dependence on the initial condition. However,
ENP (h) is almost constant, as shown in Figure 11B. Second,
the return plot of {Ti} in the inset reveals that {Ti} tends to
take small values and large values alternately. This tendency
is also observed in Figure 7A. This property makes the pre-
diction easier, producing small values of ENP (h). There-
fore, we conclude that chaos is not observed in the time se-
ries {Ti} for εIE = 1.68.

We performed similar analyses for macroscopic durations,
the results of which are presented in Figures 11C and 11D.
The examined time series {Ti} is identical to that used
in Figure 7B. The nonlinear prediction errors ENP (h) for
εIE = 1.6 and 1.68 did not significantly differ from those
of the original data. Therefore, the time series {Ti} are re-
garded as being generated by some stochastic process.

In summary, chaotic properties are not observed in the
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time series of either microscopic or macroscopic durations.
This result suggests that our model is consistent with the re-
sults in Lehky (1995).

7 Two properties of the binocular ri-
valry

In this section, we show that our model can reproduce two
characteristics of binocular rivalry.

First, when reducing the contrast of a stimulus to one eye,
it is known that dominance intervals in the other eye increase
and dominance intervals in the stimulated eye are relatively
unchanged (Laing & Chow, 2002; Wilson, 2007).

To reproduce this observation, in the network with p = 2,
we reduce the contrast of pattern 1, and we observe the mean
macroscopic durations 〈T (1)〉 and 〈T (2)〉 of patterns 1 and
2, respectively. The contrast of pattern 1 is defined as the
strength of the the constant inputs to the modules that store
the value 1 for pattern 1. For that purpose, we replace the
parameter rE of the modules that store the value 1 for pattern
1 with rE + dr

(1)
E .

The dependences of 〈T (1)〉 and 〈T (2)〉 on dr
(1)
E for three

values of εIE are shown in Figure 12A. It is observed that
〈T (2)〉 mainly increases and 〈T (1)〉 moderately decreases
when decreasing dr

(1)
E . Note that the data are not shown

when 〈T (2)〉 diverges for εIE = 1.68.
Second, we show that dominance intervals in both eyes

decreases when increasing the contrast of the stimuli to both
eyes (Laing & Chow, 2002; Wilson, 2007). For that purpose,
we replace the parameter rE of the modules that store the
value 1 for pattern 1 or 2 with rE + dr

(1,2)
E .

The dependences of 〈T (1)〉 and 〈T (2)〉 on dr
(1,2)
E are

shown in Figure 12B. It is observed that both 〈T (1)〉 and
〈T (2)〉 tend to decrease with the increase of dr(1,2)E for three
values of εIE . Although fluctuation in 〈T (1)〉 and 〈T (2)〉 is
large for εIE = 1.68, it might be because some bifurcations
take place in this range of dr(1,2)E ; however, the tendency for
〈T (1)〉 and 〈T (2)〉 to decrease is still observed.

8 Conclusions
We proposed a pulse neural network that exhibits chaotic pat-
tern alternations between two stored patterns as a model of
multistable perception, which is reflected in such phenomena
as binocular rivalry and perceptual ambiguity.

To measure the durations of each pattern, we introduced
two durations. The microscopic durations treated the mixed
state as another pattern, while the macroscopic durations
treated the mixed state as part of each pattern.

The distribution of the microscopic durations was char-
acterized by a monotonically decreasing function and fol-
lowed an exponential distribution for large durations. On
the other hand, the distribution of the macroscopic durations
was unimodal, following a gamma or log-normal distribu-
tion, though the log-normal distribution was associated with

Figure 12: Two characteristics of binocular rivalry. (A)
When reducing the contrast dr

(1)
E of pattern 1, the mean

macroscopic duration 〈T (2)〉 of pattern 2 increases and the
mean macroscopic duration 〈T (1)〉 of pattern 1 is relatively
unchanged. (B) When increasing the contrast dr(1,2)E of both
patterns, the mean macroscopic durations 〈T (1)〉 and 〈T (2)〉
of both patterns tend to decrease.

improved fit relative to the gamma distribution. Therefore,
we conclude that the macroscopic durations of the chaotic
pattern alternations can reproduce the unimodal distribution
of dominance durations observed in multistable perception.
It is found that the peak position of the distribution depends
on the number of mixed patterns and intermodule connection
strength.

Moreover, we examined the existence of chaotic proper-
ties in the time series of durations using a time series pre-
diction method based on reconstruction. The results of our
analysis revealed no chaotic properties for either duration.
Therefore, our model is consistent with the previous find-
ing that the dominance durations of binocular rivalry are not
chaotic, as Lehky (1995) stated.

It was also shown that our model can reproduce two char-
acteristics of binocular rivalry. First, when reducing the con-

10



trast of a stimulus to one eye, dominance intervals in the
other eye increase and dominance intervals in the stimulated
eye are relatively unchanged (Laing & Chow, 2002; Wilson,
2007). Second, when increasing the contrast of the stimuli to
both eyes, dominance intervals in both eyes decrease (Laing
& Chow, 2002; Wilson, 2007).

In summary, our network with chaotic pattern alternations
can be regarded as a model of multistable perception.

The absence of chaotic properties in the durations of
chaotic pattern alternations may be due to several reasons.
First, the durations are much longer than the time scale of
the chaotic oscillations. For example, the inter-peak intervals
of the chaotic oscillations in Figure 1E are approximately
∆t ' 25. If we analyze the chaotic properties in the time
series of these inter-peak intervals, chaos is observed (Kana-
maru & Sekine, 2005a). However, the durations of chaotic
pattern alternations are much longer than those in Figure 3B;
therefore, chaos was not observed. This property reflects the
fact that our network is composed of pulse neurons and uses
chaotic synchronization. Second, the absence of chaos may
be related to aspects of chaos theory, which states that in a
system under crisis, the durations of the system that remains
around the destabilized chaotic attractor obey the exponen-
tial distribution, and they have a sensitive dependence on the
initial conditions (Ott, 2002). In our model, the durations
obeying the exponential distributions correspond to the re-
sults in Figure 6. The sensitive dependence of the durations
on the initial conditions implies that the time series of the du-
rations become stochastically independent, and in our model,
this fact corresponds to the results in Figures 7, 11A, and
11B. The oscillating component in Figure 7A and the deter-
ministic properties in Figure 11B are caused by the tendency
to take small values and large values alternatively, and they
are not related to chaos; such deterministic properties disap-
pear when the macroscopic durations are used as shown in
Figures 7B and 11D.

Finally, we state the difference between our model and
Nagao’s chaotic associative memory model (Nagao et al.,
2000). First, Nagao’s model is composed of conventional
neuronal models based on firing rates, and our model is com-
posed of the pulse neurons. Second, the used patterns have
different structures. Nagao et al.’s model uses two patterns
made by perturbing an original pattern; therefore, their pat-
terns are correlated with each other, while our patterns are
orthogonal to each other. Their unperturbed original patterns
would correspond to our mixed states. The reason why our
model can reproduce the unimodal distribution of the dom-
inance duration without the unperturbed pattern would be
because our pattern is composed of 0/1 digits, while Na-
gao’s model uses −1/1 digits. In order to store the pat-
terns composed of 0/1 digits into a pulse neural network,
we used connection strengths defined by equations 3.3 to 3.5
that were modified from the original Hebb rule (Kanamaru,
2007). With such modified connection strengths, our model
can easily increase the number of mixed states by increasing
the number of stored patterns, and by this fact, the peak po-
sition of the distribution of the dominance duration can be
changed as shown in Figure 10.

A Fokker-Planck equation
To analyze the average dynamics of the one-module system,
we used the Fokker-Planck equations (Gerstner & Kistler,
2002), which are written as

∂nE

∂t
= − ∂

∂θE
(AEnE)

+
D

2

∂

∂θE

{
BE

∂

∂θE
(BEnE)

}
, (A.1)

∂nI

∂t
= − ∂

∂θI
(AInI)

+
D

2

∂

∂θI

{
BI

∂

∂θI
(BInI)

}
, (A.2)

AE(θE , t) = (1− cos θE) + (1 + cos θE)

×(rE + gintIE(t)− gextII(t)),(A.3)
AI(θI , t) = (1− cos θI) + (1 + cos θI)

×(rI + gextIE(t)− gintII(t)), (A.4)
BE(θE , t) = 1 + cos θE , (A.5)
BI(θI , t) = 1 + cos θI , (A.6)

for the normalized number densities of excitatory and in-
hibitory ensembles, in which

nE(θE , t) ≡ 1

NE

∑
δ(θ

(i)
E − θE), (A.7)

nI(θI , t) ≡ 1

NI

∑
δ(θ

(i)
I − θI), (A.8)

in the limit of NE , NI → ∞. The probability flux for each
ensemble is defined as

JE(θE , t) = AEnE − D

2
BE

∂

∂θE
(BEnE), (A.9)

JI(θI , t) = AInI −
D

2
BI

∂

∂θI
(BInI), (A.10)

respectively. The probability flux at θ = π can be interpreted
as the instantaneous firing rate in this ensemble, which is
denoted as JX(t) ≡ JX(π, t) where X = E or I .
IX(t) in equation 2.3 follows a differential equation that

is written as

˙IX(t) = − 1

κX

(
IX(t)− 1

2
JX(t)

)
. (A.11)

In order to integrate the Fokker-Planck equations (A.1)
and (A.2) numerically, we expanded nE(θE , t) and nI(θI , t)
into Fourier series as

nE(θE , t) =
1

2π

+

∞∑
k=1

(aEk (t) cos(kθE) + bEk (t) sin(kθE)), (A.12)

nI(θI , t) =
1

2π

+
∞∑
k=1

(aIk(t) cos(kθI) + bIk(t) sin(kθI)), (A.13)
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and, by substituting them, equations A.1 and A.2 were trans-
formed into a set of ordinary differential equations of aXk and
bXk , which are written as

da
(X)
k

dt
= −(rX + ĨX + 1)kb

(X)
k

−(rX + ĨX − 1)
k

2
(b

(X)
k−1 + b

(X)
k+1)

−Dk

8
g(a

(X)
k ), (A.14)

db
(X)
k

dt
= (rX + ĨX + 1)ka

(X)
k

+(rX + ĨX − 1)
k

2
(a

(X)
k−1 + a

(X)
k+1)

−Dk

8
g(b

(X)
k ) (A.15)

g(xk) = (k − 1)xk−2 + 2(2k − 1)xk−1 + 6kxk

+2(2k + 1)xk+1 + (k + 1)xk+2, (A.16)
ĨE ≡ gintIE − gextII , (A.17)
ĨI ≡ gextIE − gintII , (A.18)

a
(X)
0 ≡ 1

π
, (A.19)

b
(X)
0 ≡ 0, (A.20)

where X = E or I . By integrating the ordinary differential
equations (A.11), (A.14), and (A.15) numerically, the time
series of the probability fluxes JE and JI are obtained. For
numerical calculations, each Fourier series was truncated at
the first 40 terms.

B Definition of overlap

In this section, we provide a method for calculating the over-
lap mµ between a set of instantaneous firing rates JEi of
excitatory neurons in a module (1 ≤ i ≤ M) and the stored
pattern ηµi .

Because JEi is an oscillating quantity, the overlap of the
usual definition is also oscillating, even when the correct pat-
tern is retrieved. To obtain an overlap that maintains an al-
most constant value when the correct pattern is retrieved, we
defined a peak-value function PEi(t) as PEi(t) = JEi(t

∗),
where t∗ is the nearest time point that gives a peak of JEi(t)
and satisfies t∗ < t. We then transformed PEi(t) to function
OEi(t) with a range of [0,1]:

OEi(t) =


1 (PEi(t) > θ2)
PEi(t)− θ1
θ2 − θ1

(θ1 ≤ PEi(t) ≤ θ2)

0 (PEi(t) < θ1)

, (B.1)

where θ1 = 0.01 and θ2 = 0.1. Using OEi(t), the overlap
mµ between the state of the network and the stored pattern

ηµi is defined as

mµ =
1

Ma(1− a)

M∑
i=1

(ηµi − a)(OEi − a), (B.2)

=
1

Ma(1− a)

M∑
i=1

(ηµi − a)OEi. (B.3)

C Nonlinear prediction based on re-
construction

In this section, the nonlinear prediction method based on
reconstruction of dynamics is summarized (Theiler et al.,
1992; Sauer, 1994).

Let us consider a sequence {Tk} of the duration
of patterns and the delay coordinate vectors Vj =
(Tj−m+1, Tj−m+2, . . . , Tj) with the reconstruction dimen-
sion m, and let L be the number of vectors in the recon-
structed phase space Rm. For a fixed integer j0, we chose
l = βL (β < 1) points that are nearest to the point Vj0 and
denoted them by Vjk = (Tjk−m+1, Tjk−m+2, . . . , Tjk)(k =
1, 2, . . . , l). With {Vjk}, a predictor of Tj0 for h steps ahead
is defined as

pj0(h) =
1

l

l∑
k=1

Tjk+h. (C.1)

With pj0(h), the normalized prediction error (NPE) is de-
fined as

ENP (h) =
〈(pj0(h)− Tj0+h)

2〉1/2

〈(〈Tj0〉 − Tj0+h)2〉1/2
, (C.2)

where 〈·〉 denotes the average over j0. A small value of NPE
i.e., less than 1, implies that the sequence has determinis-
tic structure behind the time series because this algorithm is
based on the assumption that the dynamical structure of a
finite-dimensional deterministic system can be well recon-
structed by the delay coordinates of the sequence (Sauer,
1994). However, stochastic time series with large autocor-
relations can also take NPE values less than 1. Therefore,
we could not conclude that there is deterministic structure
only from the magnitude of NPE.

To confirm the deterministic structure, the values of NPE
should be compared with those of NPE for a set of surrogate
data (Theiler et al., 1992). The surrogate data used in the
present study were new time series generated from the orig-
inal time series under some null hypotheses so that the new
time series preserve some statistical properties of the origi-
nal data. In the present study, we used random shuffled (RS)
and amplitude adjusted Fourier transformed (AAFT) surro-
gate data, which correspond to the null hypothesis of an inde-
pendent and identically distributed random process and that
of a linear stochastic process observed through a monotonic
nonlinear function, respectively. To obtain AAFT surrogate
data, we used TISEAN 3.0.1 (Hegger, Kantz, & Schreiber,
1999; Schreiber & Schmitz, 2000). If the values of NPE for
the original data are significantly smaller than those of NPE
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for the surrogate data, the null hypothesis is rejected, and it
can be concluded that there is some possibility that the orig-
inal time series has deterministic structure.
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