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Abstract

To study the mechanism by which high-dimensional
chaos emerges in neural systems, the synchronization
of chaotic firings in class 1 pulse neural networks com-
posed of excitatory and inhibitory ensembles was ana-
lyzed. In the system with two modules (i.e., two pulse
neural networks), blowout bifurcation and on-off inter-
mittency were observed when the inter-module connec-
tion strengths were reduced from large values. In the sys-
tem with three modules, rearrangement of synchronized
clusters and chaotic itinerancy were observed. Such dy-
namics may be one of the mechanisms through which
high-dimensional chaos is generated in neural systems.

1 Introduction

Since the 1980s, many efforts have been made to eluci-
date the chaotic dynamics in neural systems. Chaotic
dynamics were observed in vitro in single neurons such
as the squid giant axon [Matsumoto et al., 1984] and the
onchidium giant neuron [Hayashi et al., 1982]. Chaotic
dynamics were also observed in neuronal networks such
as the olfactory bulb of rabbits [Freeman, 1987]. Al-
though chaotic dynamics were demonstrated in exper-
imental studies, it is unclear whether chaotic dynamics
actually exist in neural systems under normal conditions.
It is also unclear whether chaotic dynamics are useful in
information processing in neural systems.

On the other hand, in modeling studies, it was re-
ported that chaotic dynamics were useful in some neural
dynamics such as the escape from local minima in op-
timization problems and the chaotic transition among
memory states in associative memory models [Aihara et
al., 1990; Inoue & Nagayoshi, 1991; Nara & Davis, 1992;
Tsuda, 1992; Adachi & Aihara, 1997; Uchiyama & Fu-
jisaka, 2004]. Such chaotic dynamics might be related to
chaotic itinerancy [Kaneko & Tsuda, 2000], which is fre-
quently discussed in high-dimensional chaotic systems.
Such high-dimensional chaotic dynamics were realized
in networks of artificial models of neurons; therefore, it

is important to confirm that high-dimensional chaos can
be observed in more realistic pulse neural networks. Al-
though it was reported that single pulse neurons [Feudel
et al., 2000; Varona et al., 2001] and pulse neural net-
works [van Vreeswijk & Sompolinsky, 1996; Kanamaru
& Sekine, 2005] can show chaotic behaviors, they were
low-dimensional chaos, and it was not known whether
neural systems show high-dimensional chaos. Chaotic
itinerancy in pulse neural networks was previously re-
ported in networks of four or five Bonhöffer-van der Pol
neurons by Tsumoto et al. [2002]. However, they stated
that only a very narrow range of values for the param-
eters resulted in chaotic itinerancy in their model, and
it was unclear whether chaotic itinerancy could be ob-
served in networks consisting of many neurons.

To obtain high-dimensional chaos, the theory of syn-
chronization of chaos can be applied. When two systems
that each shows low-dimensional chaos, are diffusively
coupled and when their coupling strengths are strong
enough, these two systems perfectly synchronize with
each other on a low-dimensional chaotic attractor. When
the coupling strengths are reduced, blowout bifurcation
[Ott & J.C. Sommerer, 1994] occurs and this synchro-
nization of chaos is broken. The synchronization of chaos
is interpreted as confinement of the coupled system in an
invariant manifold, and the blowout bifurcation destabi-
lizes this invariant manifold along the direction trans-
verse to the manifold; therefore, the dimension of chaos
increases if there are no other attractors. Diffusive cou-
pling is realized by electrical synapses in neural systems
[Nicholls et al., 2001], and synchronization of chaos and
its destabilization are observed in pulse neural networks
that are connected by electrical synapses [Elson et al.,
1998; Yoshioka, 2005]. However, it is thought that chem-
ical synapses are more frequent than electrical synapses
in the brain. It is unknown whether blowout bifurca-
tion occurs in a network of neurons that are connected
by chemical synapses. It is also unknown how high-
dimensional chaos is realized with chemical synapses.

In the present study, in order to elucidate the mech-
anism by which high-dimensional chaos emerges in neu-
ral systems, we examine the chaotic dynamics in pulse
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neural networks of neurons that are connected by chem-
ical synapses. In Sec.2, we define a module of a pulse
neural network that is composed of an ensemble of ex-
citatory neurons and an ensemble of inhibitory neurons.
To analyze the dynamics of this one-module system, we
performed linear analyses around the equilibrium points
with the Fokker-Planck equation, and various synchro-
nized firings are observed depending on the values of
the parameters including noise intensity and the con-
nection strengths [Kanamaru & Sekine, 2005]. In Sec.3,
we focus on a set of values of the parameters in which
the neurons in a one-module system show synchronized
chaotic firings with a low-dimensional attractor, and we
analyze the inter-module synchronization between two
modules of networks. We found that the inter-module
synchronization of chaotic firings was stable when the
connection strength was large, but when the connection
strength was reduced, the inter-module synchronization
of chaotic firings became unstable. It was found that
this transition was caused by blowout bifurcation [Ott
& Sommerer, 1994]. Behavior typical of the on-off inter-
mittency [Fujisaka & Yamada, 1986; Heagy et al., 1994;
Hata & Miyazaki, 1997] was also observed. The inter-
module synchronization of chaotic firings and its destabi-
lization caused rearrangements of synchronized clusters
and chaotic itinerancy. In Sec.4, tests on Morris-Lecar
neurons are performed, and similar chaotic dynamics are
observed. The final section provides a discussion and
conclusions.

2 One-Module System

In this section, we study a pulse neural network com-
posed of an ensemble of excitatory neurons with in-
ternal states θ

(i)
E (i = 1, 2, · · · , NE) and an ensem-

ble of inhibitory neurons with internal states θ(i)
I (i =

1, 2, · · · , NI) that are written as

˙
θ
(i)
E = (1 − cos θ(i)

E ) + (1 + cos θ(i)
E )

×(rE + ξ
(i)
E (t) + gEEIE(t) − gEIII(t)), (1)

˙
θ
(i)
I = (1 − cos θ(i)

I ) + (1 + cos θ(i)
I )

×(rI + ξ
(i)
I (t) + gIEIE(t) − gIIII(t)), (2)

IX(t) =
1

2NX

NX∑
i=1

∑
j

1
κX

exp

(
− t− t

(i)
j

κX

)
, (3)

〈ξ(i)X (t)ξ(j)Y (t′)〉 = DδXY δijδ(t− t′), (4)

where X,Y = E or I. Note that gXY is the connection
strength from ensemble Y to ensemble X , δXY and δij

are Kronecker’s deltas, and t
(i)
j is the j-th firing time

of the i-th neuron in ensemble X , which will be defined
later. IX(t) is the synaptic inputs from ensemble X to
the other ensemble in which the neurons are connected
by chemical synapses, and ξ

(i)
X (t) is the noise in the i-th

neuron in ensemble X . Note that the second sum in the

definition of IX(t) is taken over j satisfying t > t
(i)
j . In

the following, we call this network with excitatory and
inhibitory ensembles as the one-module system.

In the absence of noise ξ
(i)
X (t) and synaptic inputs

IX(t), a single neuron shows self-oscillation when the
system parameter rX satisfies rX > 0. When rX < 0,
this neuron becomes an excitable system with a stable
equilibrium written by

θ0 = − arccos
1 + rX

1 − rX
, (5)

in which θ0 is close to zero for rX ∼ 0. We define the fir-
ing time of the neuron as the time at which θ(i)

X exceeds π
because π is greatly differs from θ0 (∼ 0). In the follow-
ing, we use values of the parameter where rX < 0 and
we consider the dynamics of the networks of excitable
neurons.

Note that the synaptic input IX(t) from ensemble X
can be rewritten as

IX(t) =
1
NX

NX∑
i=1

I
(i)
X (t), (6)

˙
I
(i)
X (t) = − 1

κX

(
I
(i)
X (t) − δ(θ(i)

X − π)
)
, (7)

and the system governed by Eqs. (1), (2), (6), and
(7) has the form of the canonical model of slowly con-
nected class 1 neurons [Izhikevich, 1999, 2000]. Thus,
the network of slowly connected arbitrary class 1 neu-
rons [Ermentrout, 1996; Izhikevich, 1999] with global
connections can be transformed into the above form with
the appropriate change of variables. Here we restrict
the parameters so that the system parameters rE and
rI and the noise intensity D are uniform in the net-
work. Moreover, we introduce the internal connection
strength gint in an ensemble and the external connec-
tion strength gext between ensembles, and the restric-
tions gEE = gII ≡ gint = 4 and gEI = gIE ≡ gext

are placed on the connection strengths for simplicity. In
the following, the parameters are set at rE = −0.025,
rI = −0.025, and κE = κI = 1.0.

Let us analyze the synchronized firings observed in the
one-module system. The dynamics of the one-module
system are nearly identical with the dynamics of the ex-
ponentially coupled active rotators analyzed by Kana-
maru & Sekine [2005]. Therefore, we will provide a brief
description here. In the limit of NE , NI → ∞, the av-
erage behavior of the neurons in the system can be ana-
lyzed with the Fokker-Planck equations, which are shown
in Appendix A. Figure 1(a) shows a bifurcation set that
had been obtained numerically by the method described
in Appendix B. Figure 1(b) shows the probability fluxes
in the (JE , JI) plane of the regions indicated by Roman
numerals in the bifurcation set in Fig. 1(a). The proba-
bility fluxes JE and JI at θ = π are defined in Appendix
A. Note that JE and JI can be interpreted as the in-
stantaneous average firing rates of the excitatory and
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Figure 1: (a) A bifurcation set in the (D, gext) plane.
D and gext denote the noise intensity and the external
connection strength, respectively. The solid, dotted, and
dash-dotted lines denote the Hopf, saddle-node, and ho-
moclinic bifurcations, respectively. The areas where the
periodic solution with cycle 2 or the chaotic solution ex-
ists are roughly sketched. SN, saddle-node; HB, homo-
clinic bifurcation. (b) Schematic flows of the solution in
various regions in the (JE , JI) plane are shown. The
filled and open circles denote the stable and unstable
equilibrium points, respectively. The solid closed curves
denote the stable limit cycle.

inhibitory ensembles, respectively. When the probabil-
ity fluxes converge to an equilibrium point, all neurons
fire asynchronously, and when the probability fluxes con-
verge to a time-varying solution, there are some correla-
tions among the firings of neurons.

Let us understand the bifurcation set in Fig. 1(a) us-
ing the schematic flows in Fig. 1(b). For a large noise
intensity D, there exists only one equilibrium point with
large firing rates, as shown in the schematic flow for re-
gion II in Fig. 1(b). This equilibrium point corresponds
to the state where all neurons fire with large firing rates
without correlations among them. When this equilib-
rium point loses stability through the Hopf bifurcation,

a limit cycle that corresponds to synchronized firings ap-
pears. Note that as gext increases, this equilibrium point
approaches the origin of the (JE , JI) plane. Thus, the
schematic flow for region II smoothly changes to the flow
for region I. When the noise intensity D is small, there
exists a stable equilibrium point that is close to the ori-
gin, as shown in the schematic flows for regions I, III,
and IV. This equilibrium point corresponds to the state
where all neurons are fluctuating around their equilibria
because of the small D. When a homoclinic bifurcation
takes place near this stable equilibrium point, a limit
cycle appears and neurons start to fire synchronously.
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Figure 2: One-module system where D = 0.0042, gint =
4, and gext = 2.8. (a) Chaotic flow in the (JE , JI) plane.
(b) Change in JE over time. (c) Raster plot of the firing
times of the excitatory neurons in the system with NE =
NI = 5000.

In addition to the above bifurcations, there also exist
a series of period doubling bifurcations and chaotic dy-
namics in the one-module system. The area where the
periodic solution with cycle 2 exists and the area where
the chaotic solution exists, are roughly sketched in Fig.
1(a), and they are labeled as “2” and “C”, respectively.
Although periodic solutions with higher cycles also ex-
ist, these areas were omitted from Fig. 1(a) because they
were very narrow. An example of the chaotic dynamics
in a one-module system where D = 0.0042, gint = 4,
and gext = 2.8 is shown in Fig. 2. The chaotic flow in
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the (JE , JI) plane and the change in JE over time are
shown in Figs. 2(a) and 2(b), respectively. A chaotic
attractor is observed in Fig. 2(a). The firing times of
the excitatory neurons in the one-module system with
NE = NI = 5000 are shown in Fig. 2(c). It is observed
that the interval between the synchronized firings fluc-
tuates chaotically.

Figure 3(a) shows a graph of the position of the attrac-
tor on the Poincaré section JE = 0.125 with JE/dt > 0
against the noise intensity D. Period-doubling bifurca-
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Figure 3: (a) Position of the attractor on the Poincaré
section JE = 0.125 with JE/dt > 0 against D for
gint = 4 and gext = 2.8. (b) Dependence of the largest
Lyapunov exponent on the noise intensity D.

tions and chaotic dynamics are observed. The largest
Lyapunov exponent was calculated by the method de-
scribed in Appendix B, and its dependence on the noise
intensity D is shown in Fig. 3(b). It is observed that
the largest Lyapunov exponent assumes positive values
where there are chaotic dynamics.

The phenomenon observed in this section can be re-
garded as an example of noise-induced complexity [Lind-
ner et al., 2004; Zaks et al., 2005] and, more specifically,
coherence resonance [Pikovsky & Kurth, 1997; Zhou et
al., 2001]. As the noise intensity D increases from 0.001,
a periodic solution appears in the present model and
then it disappears as the noise intensity increases further
(Fig. 1(a)). This result is similar to that obtained in our
previous analysis of array-enhanced coherence resonance
[Kanamaru & Sekine, 2003]. Thus, the periodicity of the
output of the system would be maximized at an optimal
noise intensity. However, chaotic solutions also exist in

the present model; therefore, careful analyses were re-
quired.

The chaotic attractor observed in Fig. 2(a) is low-
dimensional because the number of positive Lyapunov
exponents was only one. We are interested in high-
dimensional chaos, because it is believed that the chaotic
dynamics that are useful in information processing are
high-dimensional [Aihara et al., 1990; Inoue & Na-
gayoshi, 1991; Nara & Davis, 1992; Tsuda, 1992; Adachi
& Aihara, 1997; Uchiyama & Fujisaka, 2004]. However,
it is not known how high-dimensional chaos is realized
in a network of neurons that are connected by chemical
synapses. In the next section, we study networks consist-
ing of multiple modules to examine the possibility of the
presence of high-dimensional chaos in the neural system.

3 M-Module System

In this section, to elucidate the mechanism through
which high-dimensional chaos emerges in neural systems,
we study the M -module system in which the internal
states of the neurons are defined as:

˙
θ
(i)
Ek

= (1 − cos θ(i)
Ek

) + (1 + cos θ(i)
Ek

)

×(rEk
+ ξ

(i)
Ek

(t) + gEkEk
IEk

(t) − gEkIk
IIk

(t)

+
∑
l �=k

(εEkEl
IEl

(t) − εEkIl
IIl

(t))), (8)

˙
θ
(i)
Ik

= (1 − cos θ(i)
Ik

) + (1 + cos θ(i)
Ik

)

×(rIk
+ ξ

(i)
Ik

(t) + gIkEk
IEk

(t) − gIkIk
IIk

(t)

+
∑
l �=k

(εIkEl
IEl

(t) − εIkIl
IIl

(t))), (9)

where k = 1, 2, · · · ,M and represents the index of the
modules. For simplicity, we set the intra-module con-
nection strengths as gXkYk

= gXY and the inter-module
connection strengths as εXkYl

≡ εXY (k 
= l). In the fol-
lowing, we examine the inter-module synchronization of
chaotic firings in this M -module system.

First, we consider a two-module system. Let us in-
troduce a set of intra-module connection strengths g∗int

and g∗ext with which the neurons in a one-module system
show synchronized chaotic firings with a low-dimensional
attractor, e.g., g∗int = 4 and g∗ext = 2.8, as shown in
Fig. 2. When two modules of networks with g∗int and
g∗ext are connected, these modules do not show inter-
module synchronization of chaotic firings, but converge
to a periodic solution (data not shown) because the con-
nections are not diffusive but are synaptic with chemical
synapses, as shown in Eq. (3). In order to obtain inter-
module synchronization of chaotic firings, we introduce
an arrangement of connection strengths as shown in Fig.
4; namely, for εEE and εIE, the intra-module connec-
tion strengths are set as gEE = g∗int − εEE , gII = g∗int,
gIE = g∗ext − εIE, and gEI = g∗ext. Note that the inter-
module connections originate only from the excitatory
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Figure 4: Arrangement of the connection strengths in
the two-module system that results in the inter-module
synchronization of chaotic firings.

ensembles, namely, εEI = εII = 0, because the inter-
columnar long-range connections in the cortex are exci-
tatory [Gilbert & Wiesel, 1983; Ts’o et al., 1986].

According to Appendix B, let us introduce two vectors
x1 and x2, each of which describes the average dynamics
of the neurons in the respective module. In the above
arrangement of connections, the two-module system has
a synchronized solution x1 = x2, and this synchronized
solution shows a chaotic attractor characterized by the
one-module system with g∗int and g∗ext. As shown later,
the stability of this synchronized solution depends on
the inter-module connection strength εIE . Let us fix
the values of the parameters at D = 0.0042, g∗int = 4,
g∗ext = 2.8, and εEE = 0.4, and examine whether the
stability of the synchronized solution depends on εIE .
The change in JE1 − JE2 over time for εIE = 0.84 and
εIE = 0.835 is shown in Figs. 5(a) and 5(b), respec-
tively. Note that JEk

denotes the firing rate (probabil-
ity flux) of the excitatory ensemble in the k-th module.
It is observed that the synchronized solution x1 = x2

is stable for εIE = 0.84, and that intermittent behav-
ior typical of on-off intermittency [Fujisaka & Yamada,
1986; Heagy et al., 1994; Ott & Sommerer, 1994; Hata
& Miyazaki, 1997] appears for εIE = 0.835. As shown in
Fig. 5(b), there exist nearly synchronized states where
JE1 ∼ JE2 between the intermittent bursts, and they are
called laminar states. The distribution of the duration
of the laminar states is shown in Fig. 6, and a slope of
∼ τ−1.5 which is typical of on-off intermittency [Heagy et
al., 1994; Hata & Miyazaki, 1997] is observed. A laminar
state was defined as a state that satisfies JE1 − JE2 < h
where h is an arbitrary threshold. It is also observed
that the slope does not depend on the threshold h.

To examine the stability of the synchronized solution
x1 = x2, the transverse Lyapunov exponent λ⊥ of the
synchronized solution x1 = x2 was numerically calcu-
lated by the method shown in Appendix C, and its de-
pendence on εIE is shown in Fig. 7. It is observed that
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Figure 5: Change in JE1−JE2 over time in a two-module
system where (a) εIE = 0.84 and (b) εIE = 0.835. The
other parameters are fixed at D = 0.0042, g∗int = 4,
g∗ext = 2.8, and εEE = 0.4.
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Figure 6: Distribution p(τ) of the duration τ of the lami-
nar state for D = 0.0042, g∗int = 4, g∗ext = 2.8, εEE = 0.4,
and εIE = 0.835. A slope of ∼ τ−1.5 which is typical
of on-off intermittency, is observed independent of the
threshold h.

as εIE increases, λ⊥ decreases, and λ⊥ takes the value
of zero when εIE = ε0 ∼ 0.835. The synchronized state
is stable for εIE > ε0 because λ⊥ < 0, while it is unsta-
ble for εIE < ε0 because λ⊥ > 0. Such destabilization
of the invariant manifold x1 = x2 along the direction
transverse to this manifold is called blowout bifurcation
[Ott & J.C. Sommerer, 1994].

Although the above results were obtained in the two-
module system consisting of infinite neurons, similar
phenomena are observed in the two-module system with
a finite number of neurons. The on-off intermittency
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observed in the two-module system with NEk
= NIk

=
5000 is shown in Fig. 8. The firing times of the excita-
tory neurons are plotted in Fig. 8(a), and it is observed
that the inter-module synchronization is intermittently
broken. The difference in the average firing rate JEk

of
two excitatory ensembles is shown in Fig. 8(b). Note

 0  100  200  300  400  500

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0  100  200  300  400  500
t

t

0

5000

2500

0

5000

2500

M
od

ul
e 

1
M

od
ul

e 
2

J E
1

J E
2

−

sync. async.
(b)

(a)

async.

Figure 8: On-off intermittency observed in the two-
module system with NEk

= NIk
= 5000. (a) Raster

plot of the firing times of the excitatory neurons. (b)
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of the neurons
in the excitatory ensembles of the two modules. The
parameters are identical with those in Fig. 5(b).

that JEk
is defined as

JXk
(t) ≡ 1

NXk
d

NXk∑
i=1

∑
j

Θ(t− t
(i)
j ), (10)

Θ(t) =
{

1 for 0 ≤ t < d
0 otherwise , (11)

where t
(i)
j is the j-th firing time of the i-th excitatory

neuron in the k-th ensemble Xk (X = E or I) and d =
1.0.
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Figure 9: Chaotic itinerancy in the three-module system
where NEk

= NIk
= 5000 and g∗int = 4, g∗ext = 2.8,

εEE = 0.4, εIE = 0.65, gEE = g∗int − 2εEE , gII = g∗int,
gIE = g∗ext − 2εIE, and gEI = g∗ext. (a) Raster plot of
the firing times of the excitatory neurons in the three
modules. (b) Change in the difference in the average
firing rate of the excitatory neurons JEk

over time.

Such intermittent behavior can induce chaotic itiner-
ancy, which is an example of high-dimensional chaos, in
the M -module system. The chaotic itinerancy in the
three-module system with NEk

= NIk
= 5000 is shown

in Fig. 9. The intra-module connections are defined as
gEE = g∗int − 2εEE, gII = g∗int, gIE = g∗ext − 2εIE, and
gEI = g∗ext. It is observed that modules 1 and 2 are
synchronized during 0 ≤ t ≤ 200, and modules 2 and 3
are synchronized during 250 ≤ t ≤ 500. In other words,
synchronized pairs are rearranged chaotically. Such dy-
namical rearrangement of synchronized clusters might be
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related to dynamical cell assembly [Hebb, 1949; Fujii et
al., 1996] and transitions of memory states in associative
memory models [Aoyagi & Aoki, 2004].

4 Tests on Morris-Lecar Neurons

The above results were obtained using the canonical
model of slowly connected class 1 neurons [Izhikevich,
1999, 2000]. We found that similar results were observed
in networks of other class 1 neurons. Let us consider a
network of non-dimensional Morris-Lecar neurons [Er-
mentrout, 1996].

The M -module system that is composed of non-
dimensional Morris-Lecar neurons is defined as

˙
V

(i)
Ek

= −gL(V (i)
Ek

− VL) − gKw
(i)
Ek

(V (i)
Ek

− VK)

−gCam∞(V (i)
Ek

)(V (i)
Ek

− VCa)

+HEk
+ ξ

(i)
Ek

(t)
+gEkEk

IEk
(t) − gEkIk

IIk
(t)

+
∑
l �=k

(εEkEl
IEl

(t) − εEkIl
IIl

(t)), (12)

˙
w

(i)
Ek

= λ(V (i)
Ek

)(w∞(V (i)
Ek

) − w
(i)
Ek

), (13)
˙

V
(i)
Ik

= −gL(V (i)
Ik

− VL) − gKw
(i)
Ik

(V (i)
Ik

− VK)

−gCam∞(V (i)
Ik

)(V (i)
Ik

− VCa)

+HIk
+ ξ

(i)
Ik

(t)
+gIkEk

IEk
(t) − gIkIk

IIk
(t)

+
∑
l �=k

(εIkEl
IEl

(t) − εIkIl
IIl

(t)), (14)

˙
w

(i)
Ik

= λ(V (i)
Ik

)(w∞(V (i)
Ik

) − w
(i)
Ik

), (15)

IX(t) =
1
NX

NX∑
i=1

∑
j

1
κX

exp

(
− t− t

(i)
j

κX

)
,(16)

m∞(V ) = 0.5(1 + tanh((V − V1)/V2)), (17)
w∞(V ) = 0.5(1 + tanh((V − V3)/V4)), (18)

λ(V ) =
1
3

cosh((V − V3)/(2V4)), (19)

〈ξ(i)X (t)ξ(j)Y (t′)〉 = DδXY δijδ(t− t′), (20)
X,Y = Ek or Ik(k = 1, 2, · · · ,M). (21)

The Morris-Lecar neuron is a simplified model of the
class 1 Connor model and the class 2 Hodgkin-Huxley
model, and it shows the behavior of a class 1 neuron or
a class 2 neuron depending on the values of the parame-
ters. We choose values for the parameters that result in
class 1 behavior, namely, gL = 0.5, gK = 2, gCa = 1.33,
VL = −0.5, VK = −0.7, VCa = 1, V1 = −0.01,
V2 = 0.15, V3 = 0.1, and V4 = 0.145. HEk

and HIk
are

the external constant inputs, and, for a single Morris-
Lecar neuron with the above values for the parame-
ters, saddle-node-on-limit-cycle bifurcation takes place
at HEk

, HIk
= H0 ∼ 0.0691, and this neuron starts to

oscillate when HEk
, HIk

> H0. In the following, we use
HEk

= HIk
= 0.068. The synaptic time constant κX

is fixed at κX = 6 for all ensembles. The firing time of
the i-th neuron in ensemble X is defined as the time at
which w

(i)
X exceeds 0.25.

First, let us consider a one-module system. Upon se-
lection of appropriate values for the parameters, chaotic
dynamics similar to the dynamics shown in Fig. 2 ap-
pear. The chaotic attractor observed in a one-module

JE1

JI1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  0.05  0.1  0.15  0.2

Figure 10: Chaotic attractor observed in the one-module
system of Morris-Lecar neurons with NE1 = NI1 = 5000
where D = 6 × 10−5, gint = 0.7, and gext = 0.49.

system of Morris-Lecar neurons with NE1 = NI1 = 5000
and where D = 6 × 10−5, gint = 0.7, and gext = 0.49,
is shown in Fig. 10, in which the average firing rates
JE1 and JI1 were calculated by Eq. (10). Note that this
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t
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Figure 11: Chaotic itinerancy in a three-module system
of Morris-Lecar neurons. Changes in the difference in the
average firing rate JEk

of excitatory neurons in the three
modules over time are shown. Similar to the canonical
model, for the inter-module connections εEE = 0.07 and
εIE = 0.15, the intra-module connection strengths were
set at gEE = g∗int − 2εEE, gII = g∗int, gIE = g∗ext − 2εIE,
and gEI = g∗ext where g∗int = 0.7 and g∗ext = 0.49.

chaotic attractor is observed in the one-module system
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in the case where the ratio of gext to gint is 0.7, which is
identical with the ratio in the canonical model in Fig. 2.

The chaotic itinerancy in a three-module system of
Morris-Lecar neurons is shown in Fig. 11. Similar
to the canonical model, the intra-module connection
strengths are set as gEE = g∗int − 2εEE, gII = g∗int,
gIE = g∗ext − 2εIE, and gEI = g∗ext where g∗int = 0.7
and g∗ext = 0.49. It is observed that the synchronized
clusters are also chaotically rearranged in the network of
Morris-Lecar neurons.

5 Discussion and Conclusions

To elucidate the mechanism by which high-dimensional
chaos emerges in neural systems, the synchronization of
chaotic firings in class 1 pulse neural networks with ex-
citatory and inhibitory ensembles was analyzed.

In a network consisting of a single module, linear
analyses around the equilibrium points with the Fokker-
Planck equation were performed, and various synchro-
nized firings were observed depending on the values
of the parameters such as the noise intensity and the
connection strengths. We focused on the synchronized
chaotic firings, in which the interval of the synchronized
firings fluctuated chaotically, and we observed a low-
dimensional chaotic attractor in the limit of a large num-
ber of neurons.

Next, to elucidate the mechanism by which high-
dimensional chaos emerges in neural systems, we ex-
amined the inter-module synchronization of chaotic fir-
ings in a system with two modules. Because the con-
nections between neurons are not diffusive but instead
are synaptic with chemical synapses, the inter-module
synchronization of chaotic firings was not stable when
the two modules were connected without modifying the
connection strengths. Thus, we introduced an arrange-
ment of connection strengths such that the inter-module
synchronization of chaotic firings would become a so-
lution of the system. With such connections, when
the inter-module connection strengths were large, it was
found that the inter-module synchronization of chaotic
firings was stable, and when the inter-module connection
strengths were reduced, the inter-module synchroniza-
tion of chaotic firings became unstable due to blowout
bifurcation [Ott & Sommerer, 1994]. A behavior typical
of on-off intermittency [Fujisaka & Yamada, 1986; Heagy
et al., 1994; Hata & Miyazaki, 1997] was also observed.
When the inter-module synchronization of chaotic firings
was stable, the system was confined to a low-dimensional
chaotic attractor, and when this attractor became un-
stable by blowout bifurcation, the system was blown out
from the vicinity of the low-dimensional invariant man-
ifold. In other words, a transition from low-dimensional
chaos to high-dimensional chaos took place. Blowout bi-
furcation may induce chaotic itinerancy, which is often
observed in high-dimensional chaotic systems. To con-
firm this, we studied a three-module system, and it was

observed that the synchronized clusters were rearranged
chaotically.

Because the above results were obtained using the
canonical model of slowly connected class 1 neurons
[Izhikevich, 1999, 2000], we studied whether similar re-
sults are observed in a network of other class 1 neu-
rons. In the network of Morris-Lecar neurons which are
a model of class 1 neurons, synchronization of chaos and
chaotic rearrangement of synchronized clusters were ob-
served.

If high-dimensional chaos exists in biological systems,
it might play an important role in information process-
ing in the brain, as has been proposed in modeling stud-
ies [Aihara et al., 1990; Inoue & Nagayoshi, 1991; Nara
& Davis, 1992; Tsuda, 1992; Adachi & Aihara, 1997;
Uchiyama & Fujisaka, 2004]. The synchronization of
chaos and its destabilization which were observed in our
model, may be one of the mechanisms by which high-
dimensional chaos is generated in neural systems.

Chaotic itinerancy in pulse neural networks was pre-
viously reported in networks of four or five Bonhöffer-
van der Pol neurons by Tsumoto et al. [2002], and they
stated that the range of values for the parameters that
resulted in chaotic itinerancy was very narrow in their
model. On the other hand, in our model, the range of
values for the parameters that results in chaotic itin-
erancy, is wide because it is easy to find blowout bi-
furcation in the two-module system when intra-module
synchronized chaotic firings exist in each module. More-
over, such phenomena can be observed even in a noisy
environment because synchronized chaotic firings are re-
alized by the noise-induced bifurcation in our model.

Finally, we assumed that the properties of the neurons
and connections were uniform in a module. Of course,
such model is a rough estimation of the brain where var-
ious types of neurons exist and the connections between
them are not uniform. It is known that the heterogene-
ity of the system causes various interesting phenomena
such as traveling waves and enhancement of temporal pe-
riodicity [Zhou et al., 2001; Wright et al., 2004]. Thus,
when such heterogeneity is introduced into our model,
more complex dynamics are expected and they will be
the subject of future studies.

A The Fokker-Planck Equation

for the One-Module System

To analyze the dynamics of the one-module system, we
use the Fokker-Planck equations [Kuramoto, 1984; Ger-
stner & Kistler, 2002] which are written as

∂nE

∂t
= − ∂

∂θE
(AEnE)

+
D

2
∂

∂θE

{
BE

∂

∂θE
(BEnE)

}
, (22)

∂nI

∂t
= − ∂

∂θI
(AInI)
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+
D

2
∂

∂θI

{
BI

∂

∂θI
(BInI)

}
, (23)

AE(θE , t) = (1 − cos θE) + (1 + cos θE)
×(rE + gEEIE(t) − gEIII(t)), (24)

AI(θI , t) = (1 − cos θI) + (1 + cos θI)
×(rI + gIEIE(t) − gIIII(t)), (25)

BE(θE , t) = 1 + cos θE , (26)
BI(θI , t) = 1 + cos θI , (27)

for the normalized number densities of excitatory and
inhibitory neurons, in which

nE(θE , t) ≡ 1
NE

NE∑
i=1

δ(θ(i)
E − θE), (28)

nI(θI , t) ≡ 1
NI

NI∑
i=1

δ(θ(i)
I − θI), (29)

in the limit of NE, NI → ∞. The probability flux for
each ensemble is defined as

JE(θE , t) = AEnE − D

2
BE

∂

∂θE
(BEnE), (30)

JI(θI , t) = AInI − D

2
BI

∂

∂θI
(BInI), (31)

respectively. In the limit of NX → ∞, IX(t) in Eq. (3)
follows a differential equation that is written as

˙IX(t) = − 1
κX

(
IX(t) − 1

2
JX(t)

)
, (32)

where JX(t) ≡ JX(π, t) is the probability flux at θX = π.
By integrating the Fokker-Planck equations (22) and

(23) and the differential equation (32) simultaneously,
the dynamics of the network that is governed by Eqs.
(1) and (2) can be analyzed.

B Numerical Integration of the
Fokker-Planck Equations

In this section, we provide a method of performing the
numerical integration of the Fokker-Planck equations
(22) and (23). Because the normalized number densities
given by Eqs. (28) and (29) are 2π-periodic functions of
θE and θI , respectively, they can be expanded as

nE(θE , t) =
1
2π

+
∞∑

k=1

(aE
k (t) cos(kθE) + bEk (t) sin(kθE)),

(33)

nI(θI , t) =
1
2π

+
∞∑

k=1

(aI
k(t) cos(kθI) + bIk(t) sin(kθI)),

(34)

and, by substituting them, Eqs. (22) and (23) are trans-
formed into a set of ordinary differential equations of aX

k

and bXk , which are written as

da
(X)
k

dt
= −(rX +KX + 1)kb(X)

k

−(rX +KX − 1)
k

2
(b(X)

k−1 + b
(X)
k+1)

−Dk

8
g(a(X)

k ), (35)

db
(X)
k

dt
= (rX +KX + 1)ka(X)

k

+(rX +KX − 1)
k

2
(a(X)

k−1 + a
(X)
k+1)

−Dk

8
g(b(X)

k ) (36)

g(xk) = (k − 1)xk−2 + 2(2k − 1)xk−1 + 6kxk

+2(2k + 1)xk+1 + (k + 1)xk+2, (37)
KX ≡ gXEIE − gXIII , (38)

a
(X)
0 ≡ 1

π
, (39)

b
(X)
0 ≡ 0, (40)

where X = E or I. Using a vector x =
(IE , II , aE

1 , b
E
1 , a

I
1, b

I
1, a

E
2 , b

E
2 , a

I
2, b

I
2, · · ·)t, the ordinary

differential equation ẋ = f(x) is defined by (32), (35),
and (36). By integrating this ordinary differential equa-
tion numerically, the time series of the probability fluxes
JE and JI are obtained. For numerical calculations, each
Fourier series is truncated at the first 40 or 60 terms.

The bifurcation lines of the Hopf bifurcation and the
saddle-node bifurcation in Fig. 1 were obtained as fol-
lows. A stationary solution xs was numerically obtained
by the Newton method [Press et al. 1988], and the eigen-
values of the Jacobian matrix Df(xs) that had been nu-
merically obtained by using the QR algorithm [Press et
al. 1988], were examined to find the bifurcation lines. On
the other hand, the bifurcation lines of the homoclinic
bifurcation were obtained by observing the long-time be-
haviors of the solutions of ẋ = f(x).

The largest Lyapunov exponent in Fig. 3 was calcu-
lated by the standard technique [Ott, 1993], namely, by
calculating the expansion rate of two nearby trajectories,
each of which follows ẋ = f(x).

C Numerical Calculation of the

Transverse Lyapunov Expo-
nent

Let us consider a two-module system characterized by
two vectors x1 and x2 (as defined in Appendix B), and
define a mean vector X and a difference vector ∆x as

X =
x1 + x2

2
, (41)

∆x =
x1 − x2

2
. (42)
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When the two modules are synchronized (x1 = x2), the
mean vector X moves on a chaotic attractor that is re-
stricted to the invariant manifold ∆x = 0. The trans-
verse stability of the synchronized solution is determined
by the transverse Lyapunov exponent λ⊥, which is de-
fined by

λ⊥ = lim
n→∞

1
nτ

n∑
j=1

ln
( |∆x(t+ jτ)|
|∆x(t+ (j − 1)τ)|

)
, (43)

where τ is an arbitrary short period of time. When the
synchronized solution x1 = x2 is unstable, the compo-
nents of the vector ∆x exponentially grow and take large
values. Thus, the length of ∆x should be periodically
normalized to the value l based on the equations

x′
1 = X + l

∆x

|∆x| , (44)

x′
2 = X − l

∆x

|∆x| . (45)
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