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Abstract

The array-enhanced coherence resonance (AECR) in the diffusively coupled active rotators is investigated
and its analysis with the nonlinear Fokker-Planck equation is presented. By considering the nonlinear Fokker-
Planck equation of the rotators, it is found that the time-periodic solution exists in some parameter range. By
solving the equation of a rotator and the Fokker-Planck equation simultaneously, the behavior of a rotator in
the system with infinite number of rotators is considered, and it is found that AECR also takes place in this
infinite system. Thus it is concluded that AECR is caused by the time-periodic solution of the probability
density induced by noise.

IEICE Transactions on Fundamentals, vol.E86-A, no.9, (2003) 2197-2202.

1 Introduction

In noisy nonlinear systems, stochastic resonance (SR) is a well-known phenomenon where a weak periodic signal
is enhanced by its background noise and observed in many systems, such as bistable ring lasers, semiconductor
devices, chemical reactions, and neural systems[1]. When a periodic signal and noise are injected to such systems
simultaneously, the signal to noise ratio of the output signal is maximized at an optimal noise intensity.

Even when the periodic input does not exist, it is known that the coherence, or, typically the periodicity of the
output of the system is maximized at an optimal noise intensity in some nonlinear systems, and this phenomenon is
called coherence resonance (CR)[2]. CR is often demonstrated with the neuronal model, e.g., the Hodgkin-Huxley
model[3] and the FitzHugh-Nagumo model[4]. As a neural model, CR in the spatially extended systems, or, the
neuronal network is of importance. In Refs. [5, 6, 7], the diffusively coupled FitzHugh-Nagumo models is treated,
and it is observed that the maximum of the coherence of the system is further enhanced by the coupling. This
phenomenon is called the array-enhanced coherence resonance (AECR). The diffusive connections correspond to the
electrical coupling with gap junctions[8] in the neuronal system. Usually, the synaptic, or, the chemical couplings
are thought to be more typical in the brain than the electrical ones, but recently the importance of the electrical
couplings is emphasized by several authors[9, 10, 11]. Thus AECR might be a source of the oscillation in the
biological system.

In the present paper, the array-enhanced coherence resonance in the diffusively coupled active rotators are
treated and its analysis with the nonlinear Fokker-Planck equation is presented. In Sect. 2, the diffusively coupled
active rotators with noise are defined and AECR is observed by numerical simulations. In Sect. 3, the nonlinear
Fokker-Planck equation is introduced and its bifurcation diagram is presented. It is found that the time-periodic
solution exists in some parameter range. By solving the equation of a rotator and the Fokker-Planck equation
simultaneously, the behavior of the rotator in the system with infinite number of rotators is considered, and it is
found that AECR also takes place in this infinite system. Conclusions and discussions are presented in the final
section.

2 Array-enhanced coherence resonance in the diffusively coupled ac-
tive rotators

Let us consider the diffusively coupled active rotators with noise[12, 13, 14, 15] written as

θ̇i = 1 − a sin θi +
g

N

N∑
j=1

sin(θj − θi) + ξi(t), (1)

〈ξi(t)ξj(t′)〉 = Dδijδ(t − t′), (2)

1



0
0.5

1
1.5

-0.5
-1

-1.5

0
0.5

1
1.5

-0.5
-1

-1.5

t
0 100 200 300

-s
in

(θ
1)

-s
in

(θ
2)

T1
1 T1

2

T2
1 T2

2

Figure 1: The time series of − sin(θ1) and − sin(θ2) for D = 0.03 and g = 0.5.

where a is a system parameter, g is the coupling strength, N is the number of rotators, ξi(t) is Gaussian white
noise, D is the noise intensity, and δij denotes Kronecker’s delta. This model is first treated by Shinomoto and
Kuramoto[12], and we use the same one in the following with some modifications of the parameters. For a < 1,
the active rotator oscillates, and for a > 1, it shows the typical behavior of the excitable system, namely, it has
a stable equilibrium and − sin(θi) shows a pulse-like waveform with an appropriate amount of disturbance. The
neurons which compose the neuronal network in the brain are the typical examples of the excitable system, thus
the active rotator can be regarded as a model of a single neuron, and their diffusive connections correspond to
the electrical coupling with gap junctions[8]. Moreover, the active rotator can also be regarded as a model of the
average behavior of some ensemble of neurons. In the following, the parameter is fixed as a = 1.01. The time series
− sin(θ1) and − sin(θ2) for D = 0.03 and g = 0.5 are shown in Fig. 1. To integrate Eq. (1) numerically, the second
order Runge-Kutta method[16] is used.

Let us define the firing time of the i-th rotator as the time when − sin(θi) exceeds the value 0.5, and define the
k-th firing time of the i-th rotator as tki . With tki , the interspike interval of the i-th rotator is defined as

T k
i = tk+1

i − tki , (3)

and, with T k
i , the coherence measure[5] R is defined as

R = 〈Ri〉i ≡
〈

〈T k
i 〉k√

〈(T k
i )2〉k − 〈T k

i 〉2k

〉
i

, (4)

where 〈·〉k denotes the average over the firing number k, and 〈·〉i denotes the average over the rotators 1 ≤ i ≤ N .
For periodic pulse trains, R takes a large value, and, for highly random pulse trains, it takes a small value. For
example, R diverges for purely periodic pulse trains, and it takes the value 1 for pulse trains generated by the
Poisson process. Note that Ri is the reciprocal of the coefficient of variation which is often used to measure the
randomness of a spike train in the neuroscience[17].

To measure the degree of synchronization, let us define S as

S = 〈S(t)〉t, (5)
S(t) = 〈cos(θi − θi′)〉i�=i′ . (6)

If the rotators represent the neuronal models, the correlation C of the firings of each rotator is also important. To
define C, the time under observation is divided into n bins of the width ∆, and the number of firings in the l-th bin
is denoted as Xl and Yl for two time series − sin(θi) and − sin(θj). Note that the width ∆ is sufficiently small so
that Xl and Yl take the value 0 or 1. Then X =

∑
Xl and Y =

∑
Yl are the numbers of firings, and Z =

∑
XlYl

is the number of coincident firings. The correlation coefficient C between two pulse trains[18] is defined as

C =
Z − (XY )/n√

X(1 − X/n)Y (1 − Y/n)
∈ [−1, 1]. (7)
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Figure 2: The dependences of (a) R, (b) S, and (c) C on the noise intensity D for g = 0.1, 0.5, 0.7, and 1.0 with
N = 100.

Note that C takes the value 1 for the identical pulse trains and takes the value 0 in the large n limit for two pulse
trains without correlation. And C takes the value −1 when two pulse trains have a negative correlation, namely,
Xl + Yl = 1 for l = 0, 1, 2, · · ·. In the following, the value ∆ = 5 is used.

The dependences of R, S, and C on the noise intensity D for the system with N = 100 is shown in Fig. 2. As
shown in Fig. 2(a), for each value of g, R is maximized at an optimal noise intensity. This phenomenon shows that
the periodicity of the firings of each rotator, or, the coherence is maximized at an optimal noise intensity and it
is called coherence resonance (CR)[2]. Let us define the maximum value of R for each g as Rpeak. It is observed
that Rpeak is also maximized at some value of g. The dependence of Rpeak on the coupling strength g is shown in
Fig. 3(a), and the maximization of Rpeak is observed. This result shows that the degree of coherence is enhanced
by the coupling of the rotators, and it is called array-enhanced coherence resonance (AECR)[5, 6, 7].

The dependence of S on the noise intensity D is shown in Fig. 2(b), and it shows that S monotonically decreases
as D increases. This is because S takes large value even when the rotators fluctuate around the equilibrium points.
If the rotator is regarded as a model of the neuron, the correlation C of the firings seems to be more important.
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Figure 3: The dependences of (a) Rpeak and (b) Cpeak on the coupling strength g for N = 100.

The dependence of C on D is shown in Fig. 2(c), and it shows that C is also maximized as a function of D. This
phenomenon is similar to so-called correlation resonance[19]. The dependence of the peak value Cpeak of C on
the coupling strength g is shown in Fig. 3(b), and it is observed that the Cpeak monotonically increases with the
increase of g. It is because all the rotators synchronize each other for large g. As shown in Figs. 2 and 3, the firings
induced by AECR have the high coherence and the high correlation.

In the following sections, the mechanism of AECR in the diffusively coupled active rotators is investigated.

3 The analysis with the nonlinear Fokker-Planck equation

In this section, the system in the limit of N → ∞ is considered. The analyses in this section correspond to those
of asymmetric model treated by Sakaguchi et al.[13]. Let us consider the normalized number density of the rotator
having the phase θ at time t written as

n(θ, t) ≡ 1
N

N∑
i=1

δ(θi − θ). (8)

With n(θ, t), Eq. (1) is rewritten as

θ̇i = 1 − a sin θi + ξi(t)

+g

∫ 2π

0

dθ′ sin(θ′ − θi)n(θ′, t). (9)

In the limit of N → ∞, n(θ, t) may be identified with the probability density, and in this approximation n(θ, t)
follows the nonlinear Fokker-Planck equation [12, 13, 15, 20] written as

∂n

∂t
= − ∂

∂θ
{F (θ, t)n} +

D

2
∂2n

∂θ2
, (10)

F (θ, t) = 1 − a sin θ
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Figure 4: Numerical solutions of n(θ, t) for (a) D = 0.1 and g = 0.1 and for (b) D = 0.1 and g = 1.

+g

∫ 2π

0

dθ′ sin(θ′ − θ)n(θ′, t). (11)

First, let us consider the dependence of n(θ, t) on the coupling strength g and the noise intensity D. To obtain
the numerical solution, Eq. (10) is transformed into a set of ordinary differential equations ẋ = f (x) for the spatial
Fourier coefficients of n(θ, t), and they are numerically integrated with the fourth order Runge-Kutta method. The
numerical solutions of Eq. (10) for D = 0.1 and g = 0.1 and for D = 0.1 and g = 1 are shown in Figs. 4(a) and (b),
respectively. It is found that Eq. (10) typically has the stationary density (S) and the time-periodic density (P )
according to the values of g and D as shown in Figs. 4(a) and (b), respectively. When the system converges to the
stationary density S, all the rotators fluctuate around their equilibria or they fire without correlation, and when it
converges to the time-periodic density P , the rotators oscillate periodically with some degree of correlations.

A bifurcation diagram in the (D, g) plane is shown in Fig. 5. This result seems to agree with that of Sakaguchi
et al.[13]. The open circles show the parameters where the numerically obtained n(θ, t) converges to the time-
periodic density, and the solid and dotted lines are the Hopf bifurcation line and the saddle-node bifurcation line,
respectively. Two saddle-node bifurcation lines intersect at a cusp bifurcation point, and a saddle-node bifurcation
line, a Hopf bifurcation line, and a saddle separatrix loop bifurcation line (not shown) intersect at a Bogdanov-
Takens bifurcation point[21, 22]. The Hopf and saddle-node bifurcation lines are obtained as follows. We consider
a set of ordinary differential equations ẋ = f(x) for the spatial Fourier coefficients of n(θ, t), and the stationary
solution x0 which satisfies f (x0) = 0 is numerically obtained. According to the numerically obtained eigenvalues
of the Jacobian matrix Df (x0), the bifurcation lines are determined.

A schematic bifurcation diagram around the Bogdanov-Takens bifurcation point is shown in Fig. 6. Schematic
diagrams of the typical trajectories projected onto a two-dimensional plane in each area are also illustrated. In
Ref. [13], a low dimensional model of Eq. (10) is investigated and the theoretical analysis of these bifurcations are
presented.
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Figure 6: A schematic bifurcation diagram around the Bogdanov-Takens bifurcation point. The solid, dotted,
and dash-dotted lines denote the Hopf bifurcation line, the saddle-node bifurcation line, and the saddle-separatrix
loop bifurcation line, respectively. Schematic diagrams of the typical trajectories projected onto a two-dimensional
plane in each area are also illustrated. The filled and open circles in the trajectories denote the stable and unstable
equilibrium points, respectively. And the solid closed curve denotes the stable limit cycle. The meanings of the
abbreviations are as follows: SN - saddle-node, H - Hopf, C - Cusp, BT - Bogdanov-Takens, SSL - saddle separatrix
loop, SNSL - saddle-node separatrix loop, and SNL - saddle-node on limit cycle.

To compare the behavior of a rotator in the system for finite N with the behavior of the system in the limit of
N → ∞, let us consider the system governed by Eqs. (9) and (10) and we call it an infinite system in the following.
The dependence of the coherence measure R of the infinite system also shows the typical property of CR, namely,
it takes a maximum value at an optimal noise intensity. As shown in Fig. 7, R takes a maximum value when
D crosses the saddle-node bifurcation line and enters the region where the time-periodic density P exists. It is
naturally understood because the time-periodic density acts as a periodic input to the rotator. The dependence
of Rpeak on the coupling strength g in the infinite system is shown in Fig. 8. It is observed that AECR also takes
place in the infinite system. The maximum of Rpeak is given by the optimal values of D and g on the bifurcation
line as follows. When g is increased from the small value along the right branch of the saddle-node bifurcation
line, the effective noise intensity of the rotator is thought to decrease, thus the firings of the rotator become more
coherent. However, when g is increased further, the noise intensity D which causes the saddle-node bifurcation
also increases (see Fig. 5), thus the firings become less coherent and Rpeak decreases.
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From the above discussions, it is concluded that AECR in the diffusively coupled active rotators is caused by
the time-periodic solution of the probability density of the rotators. When the array-enhancement takes place, the
coupling term in Eq. (9) is dominant and acts as a periodic input in the dynamics of the rotator. On the other
hand, for small g, e.g., g = 0.1 in Fig. 2(a), there is no time-periodic density in the system (see Fig. 5), thus noise
is dominant in Eq. (9) and the usual CR takes place.

The difference of the values of Rpeak’s between Figs. 3(a) and 8 is caused by the finite size effect. The dependences
of the coherence measure R on the noise intensity D of the infinite system and the finite system with N = 100,
1000, and 10000 for g = 0.7 are shown in Fig. 7. As N increases, the values of R for the finite system approach to
those of the infinite system. Thus it can be concluded that the infinite system well describe the behavior of the
finite system with large N .

4 Conclusions and discussions

The array-enhanced coherence resonance in the diffusively coupled active rotators with noise is investigated and
its analysis with the nonlinear Fokker-Planck equation is presented.

When the noise intensity D is increased, the typical property of the coherence resonance (CR), namely, the
maximization of the coherence measure R at an optimal noise intensity is observed. It is also found that the
correlation C of the firings is maximized with the increase of D. Moreover, the further maximization of the
maximum value Rpeak of R with the increase of the coupling strength, known as array-enhanced coherence resonance
(AECR), is observed.

By the analysis with the nonlinear Fokker-Planck equation, it is found that the probability density of the
rotators with noise has a time-periodic solution in some parameter range. By solving the equation of the rotator
and the Fokker-Planck equation simultaneously, the behavior of the rotator in the system with infinite number of
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rotators is considered, and it is found that AECR also takes place in this infinite system. Thus it is concluded that
AECR is caused by the time-periodic solution of the probability density of the rotators. On the other hand, for
small g, there is no time-periodic density in the system (see Fig. 5), thus the usual CR takes place.
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