Android OS とカメラを用いた対象物追跡における処理の高速化 Effective calculation of processing for target tracking using Android OS


高木 佑介[†] 齋藤 翼[†] 金丸 隆志[†] Yusuke Takagi Tsubasa Saito Takashi Kanamaru

1.研究背景

オープンソースである Android は、その汎用性の高さから様々な機器に利用可能である。現在では主にスマートフォンの OS として注目を集めているが、我々はこれを組み込みデバイス用の OS として利用する。これにより、スマートフォンの OS としてだけではなく、Android の新たな利用の場が開拓できるのではないかと考えている。

2.目的

本テーマでは、Android OS の利用の一例を提案する. 組み込みデバイスのターゲットとして Texas Instruments 製の BeagleBoard を用いる. モータで上下左右に稼働可能な台座にカメラを取り付け、Android 上で画像処理をし、対象追跡を行う. その際、画像処理の計算手段を改善し、処理速度の向上を図る. 将来的な展望として、車載カメラや、防犯カメラへの技術的な転用が可能ではないかと考えている. 図 1 に構想図を示す.

3.研究内容

3.1 開発環境・機材について

- (1) Android Version ··· Android 2.2 (Froyo)
- (2) Java 統合開発環境 … eclipse 3.6
- (3) 組み込みデバイス … BeagleBoard Rev.C4
- (4) サーボモータ …双葉電子工業製 RS304MD-FF (2個)
- (5) シリアル USB 変換機 …双葉電子工業製 RSC-U485
- (6) カメラ … Logicool Webcam C210
- (7) 7インチタッチパネルモニタ … Hanwha 製 HM-TL7T
- (8) SDカード ··· Transcend (8GB)
- (9) LAN アダプター … corega CG-FEUSBTXCW
- (10) USB wifi デバイス … Planex 製 GW-US54Mini2
- (11) USB Bluetooth … Buffalo 製 BSHSBD02
 - †工学院大学大学院工学研究科機械工学専攻 Kogakuin University

3.2Android の設定

Android ソースをダウンロードし、本テーマのターゲットである BeagleBoard 用に設定した. その際 sola 氏の android-development-environment という HP を参考とした[1]. その環境をベースに、wifi、USB カメラ、Bluetooth などのデバイスを利用可能するため kernel や Android ソースを変更した. おおまかな変更手順を以下に記す. また、この作業は Linux の端末上で行う. Linux は ubuntu10.04 を用いた.

- (1) kernel 変更…wifi, USB カメラ, Bluetooth の対応
- (2) Android ソース変更 … kernel の変更への対応
- (3) kernel と Android のビルド

3.3 アプリ作成

3.3.1 Windows 用モータ制御アプリの試作

本テーマで利用するモータを制御するアプリケーションの試作を行った.これは Android のアプリケーションではなく、Windows 上で動かすアプリケーションである.モータ制御の基礎を学び、プログラムに対する知識とスキルを高めるために取り組んだ.作成したアプリケーションをもとにしながら、Androidでモータを制御するアプリケーションの作成に移った.

3.3.2 Android 用モータ制御アプリ

Cygwin, Android NDK を用いて、JNI を利用し、2つのサーボモータをそれぞれ 2 つのシークバーで操作できるアプリケーションを作成した。JNI の利用方法等については複数の HP を参考にした。詳細については参考文献 [2][3][4] 参照。このアプリを利用して、モータでカメラの台座を上下左右に自由に動かす。図 2 にアプリのスナップショットを示す。シークバーを左右に動かすことで、モータが対応した値分だけ動く。

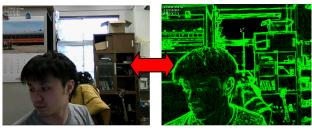


図2 モータアプリのサンプル画像

3.3.3 カメラアプリ

モータアプリと同様に、カメラアプリを作成した.カメラアプリとモータアプリをそれぞれ独立した 2 つのアプリケーションにするのではなく、1 つのアプリケーショ

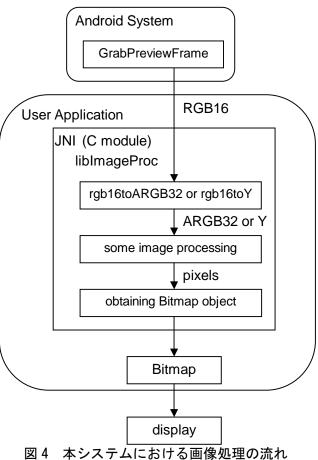
ンでモータの制御とカメラの画像を処理できるようにし た. 図 3 にカメラアプリのサンプルを示す. タッチパネ ルに触れるたびに、通常画像と境界検出が切り替わる.

カメラアプリのサンプル画像

以下ではこのカメラアプリの動作の流れを図 4 に従って 解説する. USB カメラの映像は Android ソースの

frameworks/base/camera/libcameraservice/V4L2Camera.c pp ファイルの関数 GrabPreviewFrame にてユーザーに利 用可能になっている.この関数は画像のバッファを RGB16 形式で返すよう設定している. ユーザアプリでは この形式を画像処理アプリで利用しやすいよう ARGB32 形式または輝度 Y のみに変換する JNI モジュールを作成 し、利用している. そのピクセル値を Bitmap オブジェク トに変換し、最終的にディスプレイに表示している. 上 記の処理は全て Java のみでも行えるが、JIT コンパイラ を搭載した Android 2.2 であっても Java での画像処理は JNI による C モジュールの倍近くの時間がかかった。その ため、画像処理部は全て JNI を用いて C 言語で記述して いる. なお, 画素値を Bitmap オブジェクトに変換する処 理を JNI により行うためには、Android2.2 以上の OS であ る必要がある.

3.4 台座の製作


モータを 2 つ使った台座を作成した. 上下の稼働と, 左右の稼働をそれぞれ 1 つずつのモータが担当し、上下 左右に動かせるようにした. また, カメラとモータを BeagleBoard に接続し、作成したアプリケーションでカ メラの起動とモータの制御を行う仕組みである.

3.5 対象追跡

作成したカメラアプリをもとに対象追跡の機能を付加 させる. 対象を認識するようにし、認識した対象から、 座標を取得する. 取得した値をシークバーに返し, モー タを動かす.こうすることで、カメラが対象を追跡でき るようにする.

3.6 処理の高速化

画像処理の計算手段を改善し,Android 上での画像処理 速度の向上を図る. BeagleBoard は OMAP3 プラットフ ォームを採用しており、NEON と呼ばれる SIMD 拡張を 利用できる. その利用についても検討する.

4.成果

Android OS を用いた対象追跡のカメラの作成に成功し た. また, 画像処理速度の向上も見られた.

参考文献

[1] % android-development-environment+ http://code.google.com/p/android-developmentenvironment/

[2] % ンドロイド開発環境の構築 (その 5) NDK のイン ストールと設定+

http://www.usefullcode.net/2010/12/android_sdk_inst05.ht

[3] %Android JNI プロジェクトをゼロから作る+ http://www.usefullcode.net/2010/12/android_ini.html [4] Mandroid NDK のサンプルプロジェクトをビルド/実行

http://www.usefullcode.net/2010/12/android_ndk_hello_jni. html