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Abstract

In this study, I considered quantifying the strength of chaos
in the population firing rate of a pulse-coupled neural net-
work. In particular, I considered the dynamics where the
population firing rate is chaotic and the firing of each neu-
ron is stochastic. I calculated a time histogram of firings to
show the variation in the population firing rate over time.
To smooth this histogram, I used Bayesian adaptive regres-
sion splines and a gaussian filter. The nonlinear prediction
method, based on reconstruction, was applied to a sequence
of interpeak intervals in the smoothed time histogram of fir-
ings. I propose the use of the sum of nonlinearity as a quan-
tifier of the strength of chaos. When applying this method
to the firings of a pulse-coupled neural network, the sum of
nonlinearity was seen to satisfy three properties for quanti-
fying the strength of chaos. First, it can be calculated from
spiking data alone. Second, it takes large values when ap-
plied to firings that are confirmed, theoretically or numeri-
cally, to be chaotic. Third, it reflects the strength of chaos of
the original dynamics.

1 Introduction

It is well known that the firing pattern of cortical neurons is
highly irregular, and its role in information processing has
been discussed previously (Softky & Koch, 1993). There
are several sources of fluctuations that may cause such ir-
regular firing, such as random fluctuations of ion channels
between open and closed states (Conti et al., 1975), and un-
reliable synaptic transmission, caused by a stochastic release
of chemical transmitters (Hessler et al., 1993). Since such
stochasticity is caused by thermal fluctuations, it would be
difficult to eliminate. Yet when the amounts of excitatory and
inhibitory synaptic inputs to a neuron are balanced, highly
irregular firing is observed (Shadlen & Newsome, 1994). If
such synaptic inputs cause an irregular firing pattern in cor-
tical neurons, seemingly noisy firings may play important
roles in information processing within the brain.

Findings related to such irregular firing have been reported
in both theoretical and physiological studies. For example, it

has previously been reported that a model of a network with
balanced excitatory and inhibitory activity exhibits chaotic
dynamics (Vreeswijk & Sompolinsky, 1996). In the rat bar-
rel cortex, sensitive dependence on perturbation of inputs has
been observed, in vivo (London et al., 2010). Although the
mechanism that causes this phenomenon remains unknown,
some authors have related it to the concept of “stable chaos”
that is characterized by the negative largest Lyapunov ex-
ponent (Politi & Torcini, 2010; Monteforte & Wolf, 2012;
Angulo-Garcia & Torcini, 2014). It is also possible to relate
this phenomenon to the conventional chaotic dynamics that
is characterized by the positive largest Lyapunov exponent
(Ott, 2002). In this study, I focus on conventional chaotic
dynamics characterized by the positive largest Lyapunov ex-
ponent in the brain.

If chaos exists in the brain, it is important to develop a
method by which it can be quantified experimentally. A non-
linear prediction method, based on reconstruction, is often
used to examine whether chaos exists in the spike sequence
of a neuron (Theiler et al., 1992; Sauer, 1994; Hegger, Kantz,
& Schreiber, 1999; Schreiber & Schmitz, 2000). However,
this method requires knowledge of the precise timing of each
spike, and it is unreliable in the presence of spikes caused
by noise (Kanamaru & Sekine, 2005). Therefore, to de-
crease the contribution of pulses caused by noise, a method
by which the strength of chaos in the population firing rate
of neurons can be quantified is required. For this purpose,
several conditions are prerequisite. First, this method should
quantify the strength of chaos from spiking data only, and it
should not require detailed information about the system. If
stochastic differential equations that govern the system are
known, it is possible to estimate the largest Lyapunov expo-
nent (Angulo-Garcia & Torcini, 2015). However, I will not
take this approach, as I seek to apply the proposed method to
experimental data. Second, the strength of chaos obtained by
the proposed method should take large values when applied
to firings that are confirmed, either theoretically or numeri-
cally, to be chaotic. Third, the strength of chaos obtained by
the proposed method should reflect the strength of chaos of
the original dynamics. To satisfy these conditions, I required
a theoretical model that exhibits chaotic firing, whose largest
Lyapunov exponent can be numerically calculated. More-
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over, it should be possible to control the strength of chaos of
this model by regulating its parameters.

For this purpose, I used a pulse-coupled neural network
proposed by Kanamaru & Aihara (2008). This network ex-
hibits various synchronizations, including chaotic synchro-
nizations. Typical chaotic synchronization is characterized
by chaotic oscillations of the ensemble-averaged firing rate,
with a large amplitude. This synchronization has the posi-
tive largest Lyapunov exponent in the limit of a large num-
ber of neurons. Typically, in such chaotic synchronization,
the firing of each neuron is stochastic, and its firing rate is
close to the main frequency of the ensemble-averaged firing
rate. Moreover, this network also exhibits stochastic syn-
chronization of chaos, where the ensemble-averaged dynam-
ics in neuronal assemblies exhibit chaotic oscillations with
a small amplitude and each neuron has a low firing rate. I
used such strong and weak chaotic synchronizations as two
examples in which to apply my method for quantifying the
strength of chaos.

Stochastic synchrony (Tiesinga & José, 2000; Brunel &
Hansel, 2006), where the ensemble-averaged dynamics in
neuronal assemblies exhibit oscillations, although with a low
firing rate for each neuron, is often observed in the visual cor-
tex (Gray & Singer, 1989), the hippocampus (Buzsáki et al.,
1992; Csicsvari et al., 1998; Fisahn et al., 1998; Whitting-
ton et al., 2000), and the cerebellar nucleo-olivary pathway
(Lang et al., 1996). Stochastic synchrony has been found in
modeling studies based on experimental data (Traub et al.,
1989), as well as in theoretical modeling studies (Brunel,
2000; Brunel & Hansel, 2006; Kanamaru & Sekine, 2004,
2006). Its relationship with information processing has at-
tracted much attention. Although stochastic synchrony is
typically composed of periodic oscillations, in this study,
I considered stochastic synchrony with chaotic oscillations
(Kanamaru & Aihara, 2008). One of the mechanisms under-
lying stochastic synchrony might be oscillations with small
amplitudes in the ensemble-averaged dynamics of the net-
work. If one considers a situation where dynamics averaged
over an assembly of neurons exhibit oscillation, then this os-
cillation becomes a feedback input into the network. If the
amplitude of this feedback input is sub-threshold for each
neuron, then the firing of each neuron becomes stochastic,
and stochastic synchrony occurs (Kanamaru & Sekine, 2004,
2006). This mechanism is similar to that underlying stochas-
tic resonance (Gammaitoni et al., 1998).

My method for quantifying the strength of chaos is based
on the nonlinear prediction method (Theiler et al., 1992;
Sauer, 1994). However, because the firings of each neuron
are stochastic in my model, the nonlinear prediction method
should be applied to the population firing rate of neurons,
rather than to the spike sequence of each neuron. The time
series of the population firing rate is noisy, and therefore ap-
propriate smoothing methods are required. I used Bayesian
adaptive regression splines (BARS) for smoothing (Dimat-
teo et al., 2001; Wallstrom et al., 2008). BARS approximate
a time series of the population firing rate as a linear combina-
tion of cubic splines, where their number and temporal posi-
tions vary. The data approximated with BARS follow sudden

changes in the population firing rate (Kass et al., 2005; Wall-
strom et al., 2008). For comparison, I also used smoothing
by means of a gaussian filter. Using the smoothed population
firing rate, I could calculate a sequence of interpeak intervals
(IPIs), and the nonlinear prediction method could be applied
to this sequence.

The remainder of this paper is organized as follows: In
section 2, I define a network comprising excitatory and in-
hibitory neurons and then introduce two classes of chaotic
firing. Firing where the population firing rate is chaotic and
the firing rate of each neuron is stochastic is called the rate
synchrony of chaos (RSC). Firing where the population fir-
ing rate is chaotic and the firing rate of each neuron is much
lower than that of the RSC is called stochastic synchrony
of chaos (SSC). In section 3, I define the time histogram of
firings to show variations in the population firing rate over
time. I also employ BARS and a gaussian filter as methods
to smooth the time histogram of firings. In section 4, I de-
scribe quantification of the strength of chaos in the smoothed
histogram of firings, and I examine how chaos is lost when
the number of neurons in the network and the number of ob-
served neurons decrease. The results are discussed, and I
present my conclusions in section 5.

2 Model
I consider a pulse-coupled neural network defined in Kana-
maru & Aihara (2008), comprising N excitatory neurons and
N inhibitory neurons with the internal states θ

(i)
E and θ

(i)
I

(i = 1, 2, · · · , N) governed by the following equations:
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⟨η(i)X (t)η
(j)
Y (t′)⟩ = DδXY δijδ(t− t′), (2.5)

where rE and rI are parameters of the neurons that deter-
mine whether the equilibrium of each neuron is stable. I
use rE = rI = −0.025 to ensure that each neuron has a
stable equilibrium. X = E or I denotes the excitatory or
inhibitory ensemble, respectively, while t

(j)
k is the kth firing

time of the jth neuron in the ensemble X , and firing time is
defined as the time when θ

(j)
X exceeds π, after which θ

(j)
X re-

sets to −π. Neurons communicate with each other via post-
synaptic potentials, the waveforms of which are exponen-
tial functions, as shown in equation 2.3. η

(i)
X (t) represents
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Figure 1: Firing of excitatory neurons in the network with N = 10, 000. (A, B) Time histogram of firings, calculated based
on observation of the firing of 1000 neurons. (C, D) Raster plot based on the firing of 20 neurons. (A, C) Rate synchrony
of chaos (RSC), observed with gext = 3.9 and D = 0.006. (B, D) Stochastic synchrony of chaos (SSC), observed with
gext = 4.4 and D = 0.0045.

gaussian white noise added to the ith neuron in the ensem-
ble X . The network comprises theta neurons (Ermentrout,
1996; Izhikevich, 1999, 2000), which yield spikes when suf-
ficiently large inputs are injected. For simplicity, I set the pa-
rameters as gEE = gII ≡ gint, gEI = gIE ≡ gext, gint = 5,
ggap = 0.15, τE = 1, τI = 0.5, κE = 1, and κI = 5. gint
and gext are the internal connection strength in an ensem-
ble and the external connection strength between excitatory
and inhibitory ensembles, respectively. I use these parame-
ter values because, under such conditions, the network yields
chaos with various firing rates in the limits of a large number
of neurons (Kanamaru & Aihara, 2008). Because the pur-
pose of this study is to quantify the strength of chaos in the
population firing rates of neurons, it is desirable to know in
advance whether the examined dynamics are indeed chaotic.

Unlike the network used in Kanamaru (2006), the network
defined by equations 2.1 and 2.2 incorporates connections
with gap junctions amongst inhibitory neurons, according
to previous experimental studies that showed that inhibitory
neurons in many areas of the brain, such as the cortex and the
hippocampus (Galarreta & Hestrin, 2001) are rich in elec-
trical synapses. Typically, the gap junctions facilitate the
synchronization in the system, and they are often modeled
by diffusive couplings that are proportional to the difference
in the voltages (Munro & Börgers, 2010). For networks of
phase models, the diffusive couplings are represented by si-
nusoidal terms of the phase difference (Kuramoto, 1984). I
used a network including gap junctions, as it exhibits rich
chaotic dynamics, with various firing rates. Without gap
junctions, chaotic firings with only high firing rates are ob-
served; however, by introducing gap junctions, chaotic fir-
ings with low firing rates are also observed, as I show below.

Note that for simplicity, the number of neurons in the ex-
citatory ensemble and the inhibitory ensemble are set to the

identical value N in this model. Even when each ensemble
includes a different number of neurons, the dynamics in the
limit of a large number of neurons will remain unchanged,
because the connections defined by equations 2.3 and 2.4 are
divided by the number of neurons.

As for the outputs of the network, I observed the se-
quences of the firing times for n excitatory neurons, selected
randomly from N excitatory neurons.

The typical chaotic firings considered in this study are
shown in Figure 1. The firings of the excitatory neurons
in the network with N = 10, 000 for gext = 3.9 and
D = 0.006 are shown in Figures 1A and 1C. Figure 1A
shows a histogram of the firings, as defined in the next sec-
tion, which represents the variation in the population firing
rate over time, as calculated from observation of the firing
of 1000 excitatory neurons. The value of the bin size ∆ in
the time histogram of firings is set as ∆ = 1.5, based on
the method proposed by Shimazaki & Shinomoto (2007), as
explained in the next section. Figure 1C shows a raster plot
based on the firing of 20 randomly selected excitatory neu-
rons. In Figures 1A and 1C, it can be seen that each neuron
fires once or twice, around the peak of the time histogram of
firings, and their timings fluctuate around the precise posi-
tion of each peak.

In the limit of N → ∞, the ensemble-averaged dynamics
governed by equations 2.1 and 2.2 can be analyzed using the
Fokker-Planck equation defined in Appendix A, and it can be
confirmed numerically that the population firing rate shown
in Figure 1A is chaotic (Kanamaru & Aihara, 2008). In this
study, I refer to the dynamics, where the population firing
rate is chaotic and the firing of each neuron is stochastic, as
the RSC.

The firings for gext = 4.4 and D = 0.0045 are shown
in Figures 1B and 1D. Figure 1B shows a time histogram
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Figure 2: Dynamics in the limit of N → ∞. (A, B) Instantaneous firing rates in the network. (C, D) Return plots for the
interpeak interval Ti. (A, C) RSC corresponding to Figures 1A and 1C. (B, D) SSC corresponding to Figures 1B and 1D.

of firings with ∆ = 3.0, calculated based on the observed
firing of 1000 excitatory neurons. Figure 1D shows a raster
plot based on the firing of 20 randomly selected excitatory
neurons. It can be seen that the probability of firing around
the peak of the population firing rate is low, which is a typi-
cal property of stochastic synchrony (Tiesinga & José, 2000;
Brunel & Hansel, 2006). The firings shown in Figures 1B
and 1D, are also confirmed as being chaotic in the limit of
N → ∞; therefore, I refer to the firings shown in Figures
1B and 1D as SSC, which is a special case of RSC (Kana-
maru & Aihara, 2008).

In the previous work, I characterized SSC by the differ-
ence between the main frequency of the ensemble-averaged
dynamics and that of the firing of each neuron (Kanamaru &
Aihara, 2008). The main frequency was defined as the fre-
quency at the position of broad peak of the power spectrum
of the ensemble-averaged firing rate in Kanamaru & Aihara
(2008). The main frequency fall of the ensemble-averaged
dynamics of the data in Figure 1B is fall = 0.046, and the
mean frequency of the firing of each neuron in Figure 1D is
f1 = 0.017. Because f1 is much smaller than fall, the dy-
namics in Figures 1B and 1D were called SSC in Kanamaru
& Aihara (2008). In the case of Figure 1A and 1C, the fre-
quencies are calculated to be fall = 0.038 and f1 = 0.041.
In this case, fall and f1 take similar values; therefore, the

dynamics in Figures 1A and 1C could be distinguished from
SSC in Kanamaru & Aihara (2008), and I term them RSC in
this study. I use RSC and SSC as examples to quantify the
strength of chaos. Note that the boundary between SSC and
RSC is determined based on the ratio of f1 to fall, and its
value can arbitrarily be chosen. The main concern of Kana-
maru & Aihara (2008) was the dynamics of a pulse-coupled
neural network, and not its statistical properties. Moreover,
the boundary between SSC and RSC does not affect the re-
sult of this study. Therefore, I will not discuss this boundary
further.

3 Smoothing the time histogram of
firings and calculating the IPI

In this section, I quantify the strength of chaos in firings by a
network with a finite number of neurons, as shown in Figure
1.

First, for comparison, I discuss the dynamics of RSC and
SSC in the limit of N → ∞, using the Fokker-Planck equa-
tion defined in Appendix A (Kanamaru & Aihara, 2008).
The instantaneous firing rates defined by equations A.11 and
A.12 calculated from the Fokker-Planck equation are shown
in Figures 2A and 2B, which correspond to the time his-
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Figure 3: (A, B) Cost function C(∆) for (A) RSC and (B) SSC. Dependence of the optimal ∆∗ on the observed number n
of neurons with various N for (C) RSC and (D) SSC.

tograms of firings in Figures 1A and 1B, respectively, di-
vided by n∆ in the limit of N = n → ∞ and ∆ → 0.

In the limit of N → ∞, the largest Lyapunov exponents
can be numerically calculated to be λ = 0.0183 and 0.0087
for RSC and SSC, respectively. For the numerical calcula-
tion of the largest Lyapunov exponents, I used a standard
technique (Ott, 2002; Kanamaru, 2006); namely, I calculated
the expansion rate of two nearby trajectories, each of which
follows a set of ordinary differential equations of the spa-
tial Fourier coefficients defined by equations A.13, A.16, and
A.17.

The instantaneous firing rate is a smooth function of time
t, and thus it is easy to obtain the ith peak time ti at which
the instantaneous firing rate takes the local maxima. Using
the IPI Ti ≡ ti+1 − ti, return plots in the (Ti, Ti+1) plane
are shown in Figures 2C and 2D. In Figure 2C, two decreas-
ing sections for 0 < Ti < 23 and 28 < Ti < 43 are ob-
served, which are similar to the Bernoulli shift (Ott, 2002).
In Figure 2D, parabolic structures are observed, which are
similar to the logistic map (Ott, 2002). Both structures are
typical of low-dimensional chaos. The sum of nonlinearity
SNL defined in section 4 is also shown in Figures 2C and
2D, which takes large positive values when the dynamics are
chaotic. Note that the largest Lyapunov exponent λ, shown
in Figures 2A and 2B, relates to the expansion rate of two
nearby trajectories of continuous-time dynamics (Ott, 2002).
On the other hand, SNL, shown in Figures 2C and 2D, re-
lates to discrete-time dynamics of Ti. Therefore, there is no

direct relationship between λ and SNL. The meaning of the
values of SNL will be discussed in section 4, after defining
SNL.

In order to find similar structures in a network with finite
N , I calculated the time histogram based on the observed
firings of n excitatory neurons. According to Shimazaki &
Shinomoto (2007), I divided the time axis into L bins, with
width ∆, and counted the number ki of firings in the ith bin.
The width ∆ is determined as the value ∆∗ that minimizes
the cost function.

C(∆) ≡ 2k̄ − v

(n∆)2
, (3.1)

k̄ ≡ 1

L

L∑
i=1

ki, (3.2)

v ≡ 1

L

L∑
i=1

(ki − k̄)2. (3.3)

The cost functions C(∆) for the data used in Figures 1A
and 1B are shown in Figures 3A and 3B, respectively, and,
as values of ∆ that minimize C(∆), ∆∗ = 1.5 and 3.0 are
chosen. ∆∗ depends on N , n, and the parameters of the
network. In Figures 3C and 3D, the dependence of ∆∗ on the
number n of observed neurons with various N is shown for
RSC and SSC, respectively. It is observed that ∆∗ becomes
large as n decreases because the number of firings is small.
Moreover, small ∆∗ for large n could be caused by the large

5



variability of firings among neurons. It is also observed that
the dependence of ∆∗ on N is marginal.

Figure 4: Time histogram of firings with ∆ = ∆∗ = 1.5 and
smoothed time histograms of firings for RSC. The solid and
broken lines show the time histograms of firings smoothed
with BARS and with a gaussian filter, respectively. The
bandwidth ∆g of the gaussian filter was set to the value
∆∗

g = 3.0, which maximized the sum of nonlinearity, as de-
fined in section 4.

The time histogram of firings for RSC with ∆ = ∆∗ =
1.5 is shown in Figure 4, which is identical to that in Figure
1A in the range of 0 ≤ t ≤ 125. I defined the peak time of
the time histogram of firings as the time at which this his-
togram takes local maxima. Therefore, when the shape of
the time histogram of firings is noisy, many undesirable peak
times will be detected due to noise, and smoothing of the
time histogram is required. I used BARS (Dimatteo et al.,
2001) and a gaussian filter (Kass et al., 2005) as smoothing
methods.

BARS approximate the time histogram of firings as a lin-
ear combination of cubic splines, with a variable number of
knots and temporal positions. First, the center position of
the ith bin of the time histogram in [0, T ] is defined as ti
(i = 1, 2, · · · , L), and the number of firings in the ith bin is
ki, as defined above. It is assumed that ki obeys a Poisson
distribution with mean µi, that is,

P (ki) = e−µi
µ
k
i

i

ki!
. (3.4)

Using the mean number of firings Λ(t) of each neuron per
second µi is written as,

µi = n∆Λ(ti), (3.5)

where ∆ is the width of the bin. The density function f(t)
is defined by normalizing the intensity function Λ(t). BARS
approximate this density function by a linear combination of
cubic splines. In particular, f(t) is written as

f(t) ≡ Λ(t)∫ T

0
Λ(u)du

=
C+2∑
j=1

βjbj(t), (3.6)

where C is the number of knots of cubic splines, each of
which are located at ξj (j = 1, 2, · · · , C), bj(t) is the jth
function in a cubic B-spline basis, and βj is its coefficient.∫ T

0
Λ(u)du can be approximated using the total number of

firings, divided by the number n of observed neurons. To
obtain the unknown quantities C, ξj , and βj , the reversible-
jump Markov chain Monte Carlo technique is used (Green,
1995; Dimatteo et al., 2001). In this study, I utilized the
source code for BARS implemented by Wallstrom et al.
(2008). n∆Λ(t) can be used as a smoothed function of the
time histogram of firings. Smoothing with BARS can follow
sudden changes in the time histogram of firings (Kass et al.,
2005; Wallstrom et al., 2008).

For comparison, I also used a gaussian filter. The value
of the bandwidth ∆g of the gaussian filter can be determined
arbitrarily. A large ∆g yields a smooth time histogram of
firings, although sudden changes in the time histogram of
firings will be lost. Below, I used the value of ∆g that max-
imizes the sum of nonlinearity SNL, which will be defined
in section 4. As also used in Figures 2C and 2D, SNL takes
large positive values when the dynamics are chaotic. There-
fore, this condition for determining ∆g is expected to facili-
tate identification of chaotic properties of the dynamics. The
dependence of SNL on ∆g for RSC and SSC, is shown in
Figure 5A and 5B, respectively. The positions of ∆∗

g and ∆∗

are shown with vertical arrows. It is observed that ∆∗
g and

∆∗ do not coincide. The dependence of ∆∗
g on n with var-

ious N for RSC and SSC, is shown in Figure 5C and 5D,
respectively. Similar to ∆∗ shown in Figures 3C and 3D, ∆g

is also seen to increase with the decrease of n. Moreover,
∆g largely fluctuates for n ≤ 100, because SNL becomes
very small for n ≤ 100, and consequently, the position of
the peak of SNL fluctuates markedly (Please see section 4).

In Figure 4, the smoothed time histograms of firings are
shown; the time histogram of firings smoothed with BARS
follows both rapid changes and slow changes in chaotic dy-
namics. In contrast, the time histogram of firings smoothed
with a gaussian filter does not trace the original time his-
togram of firings, although it successfully removes the high
frequency components from the time histogram of firings.

Using this result of smoothing with BARS, I confirm the
validity of the assumption that ki obeys a Poisson distribu-
tion with mean µi. Note that µi is not stationary and µi is
not reproducible because dynamics treated in the study are
chaotic. Instead of reproducing µi, I collect similar dynam-
ical states. As shown in Figure 6A, I focus on local minima
in a range [µ, µ + dµ], and collect ki in this range. In order
to confirm the validity of the assumption, a limit dµ → 0
should be considered. However, the number of bins that sat-
isfy µi ∈ [µ, µ + dµ] would be zero in the limit of dµ → 0.
Therefore, we set dµ = 0.2 in order to obtain sufficient num-
ber of bins. Distributions of ki for µ = 1 and µ = 7 are
shown in Figure 6B. Poisson distributions with µ = 1 and
µ = 7 are also shown with open and filled circles, respec-
tively. It is observed that ki obeys a Poisson distribution al-
though its shape is not smooth enough because the number
of data is small.

In the next section, I consider the strength of chaos in the
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Figure 5: Dependence of the sum of nonlinearity SNL on the bandwidth ∆g of the gaussian filter for (A) RSC and (B) SSC.
The optimal bandwidth ∆∗

g is defined as the value that maximizes SNL. Dependences of the optimal bandwidth ∆∗
g on n

with various N for (C) RSC and (D) SSC.

smoothed time histogram of firings.

4 Quantifying the strength of chaos
based on nonlinear prediction

4.1 Definition of the sum of nonlinearity
Using the smoothed time histogram of firings, I can calculate
the ith peak time ti and the IPI Ti ≡ ti+1 − ti. To quantify
the strength of chaos, a sequence {Ti} of IPIs comprising
about 1000 IPIs is required. However, 1000 IPIs cannot be
directly prepared from a long time histogram of firings, be-
cause smoothing with BARS is unstable for such histograms.
Therefore, I divided the long time histogram of firings into
short time histograms of firings in the range of [t

(b)
i , t

(b)
i+1]

with t
(b)
i+1 = t

(b)
i + T

(b)
i and T

(b)
i ≤ 200, as shown in Fig-

ure 4. Smoothing with BARS was then applied to each short
time histogram of firings, and these histograms were then
connected and the IPI sequence {Ti} calculated. The bor-
ders t(b)i (i = 0, 1, 2 · · · ) of the short time histogram of fir-
ings were determined as follows. First, I set t(b)0 = 0. t

(b)
i

(i ≥ 1) were determined as the time at which the histogram
was minimized in the range t

(b)
i−1 + 50 ≤ t ≤ t

(b)
i−1 + 200.

For the data in Figure 1A, t(b)i (i ≥ 1) were calculated as

{124.5, 201.0, 306.0, 387.0, · · · }.
In contrast, smoothing with a gaussian filter could be ap-

plied directly to the long time histogram of firings. The
dependence of computation time of smoothing with BARS
and with a gaussian filter on the number L of bins is shown
in Figure 7. The calculations were performed using a sin-
gle core of Intel Xeon (E5-1650, 3.60 GHz) for various N
and n. All the data in Figure 7 were obtained during the
quantification of the strength of chaos that are shown in Fig-
ures 11 and 14 in section 4. In Figure 7A, the computation
time for smoothing with BARS is shown. This time includes
the computation times for smoothing the many short time
histograms. In Figure 7B, the mean computation time for
smoothing the short time histograms of firings with BARS
is shown, which was obtained by dividing both the compu-
tation time and L by M , for M short time histograms. Note
that Figures 7A and 7B show semi-log graphs. Figures 7A
and 7B also show the fit with an exponential function and
with a linear function, and their coefficients of determination
R2. It was observed that the computation time for smoothing
with BARS increased exponentially with the increase of L.
The computation time for smoothing with a gaussian filter is
shown in Figure 7C, which can be seen to increase linearly
with the increase of L.

In this study, I applied the nonlinear prediction method,
based on reconstruction of the IPI sequence {Ti}, to quan-
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Figure 6: (A) A schematic diagram for choosing bins around local minima in a range [µ, µ + dµ]. (B) Distributions of ki
and Poisson distributions with µ = 1 and 7.

tify the strength of chaos (Theiler et al., 1992; Sauer, 1994)
(Appendix B). In this method, if the prediction error takes
large values, the sequence is regarded as being generated by
some stochastic process, whereas if the prediction error is
small, it can be concluded that the sequence may contain
deterministic structures, such as strange attractors. More-
over, the prediction was applied to surrogate data generated
from the original time series; by comparing these results with
those obtained from the original data, I examined the type of
stochastic process that generated the original data set.

The surrogate data were generated from the original time
series under certain null hypotheses, such that the new time
series preserved some of the statistical properties of the orig-
inal data. In this study, I used two types of surrogates: ran-
domly shuffled (RS) and amplitude-adjusted Fourier trans-
formed (AAFT) surrogate data. RS surrogate data corre-
spond to the null hypothesis that the data are generated from
an independent and identically distributed random process.
AAFT surrogate data correspond to the null hypothesis that
the data are generated from a linear stochastic process ob-
served via a monotonic nonlinear function.

I calculated the nonlinear prediction error ENP (h) for the
prediction step h for both the original and surrogate data.
The exact definition of ENP (h) is given in Appendix B.
I generated 100 samples of surrogate data and calculated
ENP (h), its mean µ(h), and standard deviation σ(h).

First, in order to confirm that ENP (h) for 100 samples
of surrogate data follows a gaussian distribution, I drew
distributions of ENP (h) with h = 1 for RS and AAFT
surrogate data for N = 10, 000 and n = 1000 and for
N = n = 10, 000 in Figures 8A and 8B, respectively. To
test their normality, I performed D’Agostino and Pearson’s
(1973) test. The obtained p-values are also shown in Figures
8A and 8B. It is observed that all the p-values are larger than
a significance level of 0.05; therefore, a null hypothesis that
ENP (1) follows a normal distribution cannot be rejected,
and I cannot conclude ENP (1) do not follow a normal dis-
tribution. Moreover, I also drew the corresponding QQ-plot
and lines that connect the first and the third quartiles in Fig-

ures 8C and 8D. Linear relations of QQ-plots also show the
normality of ENP (1). Similarly, it can be confirmed that
ENP (h) for h > 1 also follows a gaussian distribution.

Then the 95% confidence interval of ENP (h) is
[µ(h)− 1.96σ(h), µ(h) + 1.96σ(h)]. If a value of h exists
where ENP (h) of the original data falls outside of the con-
fidence interval of ENP (h) of the surrogate data, I judged
that ENP (h) of the original data and that of the surrogate
data differ significantly from each other. In such a case, I
rejected the null hypothesis, and concluded that it was possi-
ble that the original time series contained deterministic struc-
tures, such as strange attractors.

In contrast, if ENP (h) obtained for the surrogate data did
not differ significantly from that obtained for the original
data, the null hypothesis is not rejected, and the original data
are regarded as being generated by some stochastic process.
ENP (h) obtained for the IPI sequence {Ti} of the

smoothed time histogram of firings of RSC with BARS, for
N = 10, 000, n = 1000, and ∆ = ∆∗ = 1.5 (Figure 1A)
is shown in Figure 9A, denoted as “org”. The mean µ(h) of
ENP (h) for 100 samples of surrogate data (RS and AAFT)
is also shown with filled and open circles, respectively. The
data for the two types of surrogate data have almost identi-
cal values, and the filled and open circles almost cover each
other. The 95% confidence intervals of ENP (h) for each sur-
rogate data set are also shown with error bars, but these are
narrower than the filled and open circles. For example, the
95% confidence intervals for h = 1 are [1.004, 1.019] and
[1.000, 1.016] for the RS and AAFT surrogate data, respec-
tively. ENP (h) for the RS and AAFT surrogate data exhib-
ited significant differences, compared to those values for the
original data, although the two kinds of surrogate data had
almost identical values and the filled and open circles almost
cover each other. This suggested that deterministic structures
were present in the original sequence {Ti}. Sensitive depen-
dence on the initial conditions was also suggested, because
ENP (h) increased monotonically as the prediction step h
increased. Moreover, the return plot for {Ti} in the inset
of Figure 9A had two decreasing sections, similar to that in
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Figure 7: Dependence of the computation time of smoothing on the number L of bins. The data, calculated with various
N and n, used in Figures 11 and 14 are plotted. Note that panels A and B show semi-log graphs. (A) Computation time
for smoothing with BARS. (B) Mean computation time for smoothing the short-time histogram of firings with BARS. (C)
Computation time for smoothing with a gaussian filter.

Figure 2C, although the decreasing section for 28 < Ti < 43
was highly irregular.

To quantify the strength of chaos, I also show ENP (h)
for N = n = 10, 000 with ∆ = ∆∗ = 0.6, in Figure 9B.
It can be assumed that the strength of chaos in the time se-
quence shown in Figure 9B is larger than that in Figure 9A
because a large n would be able to retain any chaotic proper-
ties that exist in the original dynamics of N neurons. It was
observed that the difference between ENP (h) of the original
time series and that of the surrogate data (RS and AAFT) was
slightly larger than that in Figure 9A; therefore, this differ-
ence can act as a measure to quantify the strength of chaos.
Note that this difference is also affected by the bin size ∆.
However, in this study, I attempted to find a method for quan-
tifying the strength of chaos under the condition where ∆ is
set to the value ∆∗ that minimizes C(∆).

To quantify the strength of chaos, I defined the sum of
nonlinearity (Kanamaru & Aihara, 2012). The definition of
the sum of nonlinearity in this study is slightly modified
from that in Kanamaru & Aihara (2012), in order to im-
prove its statistical plausibility. Note that the behaviors of
the two versions of the sum of nonlinearity are quite simi-
lar. First, I defined the 95% confidence intervals of ENP (h)
for the RS and AAFT surrogate data as

[
cRS
min(h), c

RS
max(h)

]
and

[
cAAFT
min (h), cAAFT

max (h)
]
, respectively. Then, the sum of

nonlinearity was defined as

SNL =
10∑
h=1

Θ(min(cRS
min(h), c

AAFT
min (h))− ENP (h)),

(4.1)

min(x, y) =

{
x (x < y)
y (x ≥ y)

, (4.2)

Θ(x) =

{
x (x ≥ 0)
0 (x < 0)

. (4.3)

The values of SNL are shown in each panel of Figure 9. I
used SNL to quantify the strength of chaos in the time se-
ries of ensemble-averaged firing rates. Although there is no
correspondence to other quantities to measure the strength
of chaos, such as the largest Lyapunov exponent (Ott, 2002),
SNL has the advantage that it can be calculated from the
IPI sequences only and does not require information about
the system. Therefore, SNL satisfies the first condition for
quantifying the strength of chaos as stated in section 1—the
method quantifies the strength of chaos from spiking data
alone. If SNL is zero, the data can be regarded as being
generated by a stochastic process, and if SNL takes a large
positive value, there is a possibility that chaos may exist in
the system.

Kanamaru & Aihara (2012) used the slightly modified ver-
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Figure 8: (A, B) Distributions of ENP (h) with h = 1 for 100 samples of surrogate data (RS and AAFT) for N = 10, 000
and n = 1000 and for N = n = 10, 000. p-values obtained by D’Agostino and Pearson’s test are also shown. (C, D) The
corresponding QQ-plots of ENP (h) with h = 1. All the plots show that ENP (h) follows a gaussian distribution.

sion of SNL:

Nsum =

10∑
h=1

Θ(EAAFT
NP (h)− σAAFT (h)− ENP (h)).

(4.4)
The relationship between Nsum and SNL in Figure 10 shows
a linear relation. All the data in Figure 10 were obtained

Figure 10: The relationship between two versions of sum of
nonlinearity. A linear relation is observed.

for the parameters that will be used in Figures 11 and 14.
In Kanamaru & Aihara (2012), for noisy chaotic sequences,
Nsum took values in a range [0.3, 3], which was typical
“large” values of Nsum. Therefore, it is expected that SNL

also takes similar values for chaotic sequences. Note that a
range [0.3, 3] was presented here just as a guide. A crite-
rion of “large” SNL should be obtained by experiments for
various systems.

Note that both ENP (h) and SNL depend on the width ∆
of the bin. ENP (h) for ∆ = 0.1 and 3.0 are shown in Figure
9C and 9D, respectively. The values for the other parame-
ters are identical to those of Figure 9A. It was observed that
ENP (h) and SNL depend on ∆. Therefore, a careful choice
of ∆ is required. In this work, the method for determining ∆
proposed by Shimazaki & Shinomoto (2007) was used.

4.2 Quantifying the strength of chaos
Below, I shorten “SNL of the time histogram smoothed us-
ing BARS and a gaussian filter” to “SNL with BARS and a
gaussian filter”. Similarly, I use the shortened term “SNL

without smoothing” to indicate SNL that is applied to the
instantaneous firing rate in the limit of N → ∞, because
smoothing is not required in such a case.

The dependence of SNL for RSC on the number N of neu-
rons is shown in Figure 11A. The number n of excitatory
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Figure 9: (A) Analysis using the nonlinear prediction method for the IPI sequence {Ti} of the time histogram of firings
smoothed with BARS for RSC, with N = 10, 000, n = 1000, ∆ = ∆∗ = 1.5. ENP (h) for the original time series
are shown with solid lines and denoted as “org”. Mean values for 100 samples of surrogate data (RS and AAFT) are also
shown with filled and open circles. The 95% confidence intervals of surrogate data are also shown as error bars, but they are
narrower than the size of the filled and open circles. The inset shows the return plot for {Ti}, which has a similar structure
to that in Figure 2C. (B) Result for N = n = 10, 000 and ∆ = ∆∗ = 0.6. (C) Result for N = 10, 000, n = 1000, and
∆ = 0.1. (D) Result for N = 10, 000, n = 1000, and ∆ = 3.0.

neurons observed was set to n = N . Both SNL with BARS
and a gaussian filter are shown.

Both sets of results show that SNL was large for a suf-
ficiently large N , and it decreased with the decrease of N .
This result seems intuitively plausible, because RSC is con-
firmed to be chaotic in the limit of N → ∞, and this chaos
would be lost with the decrease of N because of its finite-size
effect. For comparison, in the limit of N → ∞, I calculated
SNL without smoothing for the data shown in Figure 2A as
1.762. It would be expected that the rate of increase of SNL

with the increase of N in Figure 11A becomes moderate and
SNL converges to 1.762 in the limit of N → ∞. Therefore, I
concluded that both SNL with BARS and with a gaussian fil-
ter satisfies the second condition for quantifying the strength
of chaos stated in section 1—that the strength of chaos ob-
tained by the proposed method should take large values when
applied to firings that are confirmed to be chaotic.

To examine the properties of SNL, the distributions of
SNL for various parameters were investigated and are shown
in Figure 12. Each distribution was calculated from 100
SNL, obtained by performing 100 simulations of equations

2.1 and 2.2. Figures 12A and 12B show the distributions for
BARS and the gaussian filter, respectively. Both results show
that the distribution becomes narrow for small SNL. More-
over, the results for 500 IPIs are also shown, and are labeled
as “#IPI=500”, while other results were calculated for 1000
IPIs. It can be observed that a small number of IPIs broaden
the distribution of SNL. Note that the analysis shown in Fig-
ure 12 is possible for theoretical models because many IPIs
can be produced by simulations. For experimental data with
only a single sequence of IPIs, only one value of SNL is ob-
tained. A bootstrapping of the sequence of IPIs will not work
because SNL depends on the temporal correlation of the IPIs
and the bootstrapping will break this correlation.

Similarly, I quantified the strength of chaos in SSC. It is
expected that SNL for SSC is smaller than that for RSC, to
reflect the values of SNL without smoothing in the limit of
N → ∞, shown in Figures 2C and 2D. The dependence of
SNL on N , with n = N , is shown in Figure 11B. It can be
observed that SNL with BARS for SSC took smaller values
than that for RSC. In contrast, SNL with a gaussian filter
for SSC took larger values than that for RSC. To facilitate
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Figure 11: Dependence of the sum of nonlinearity SNL on the number N of neurons. Both SNL with BARS and a gaussian
filter are shown. (A) Result for RSC. (B) Result for SSC.

Figure 12: Distributions of SNL for various parameters. Each distribution was calculated from 100 SNL obtained by
performing 100 simulations of equations 2.1 and 2.2. (A) Distributions of SNL with BARS. (B) Distributions of SNL with
a gaussian filter.

understanding of this phenomenon, power spectra of the in-
stantaneous firing rates of RSC and SSC, shown in Figures
2A and 2B in the limit of N → ∞, are shown in Figure 13.
It can be observed that the power of SSC is concentrated in a

Figure 13: Power spectra of the instantaneous firing rates of
RSC and SSC shown in Figures 2A and 2B in the limit of
N → ∞.

low-frequency region. Therefore, the effect of low-pass fil-

tering by the gaussian filter works more effectively on SSC
than on RSC. Based on this result, I concluded that SNL

with the gaussian filter does not satisfy the third condition
for quantifying the strength of chaos stated in section 1—
that the strength of chaos obtained by the proposed method
should reflect the strength of chaos of the original dynamics.
As shown in Figure 2C and 2D, in the limit of N → ∞,
SNL without smoothing for SSC (1.509) is smaller than that
for RSC (1.762). Therefore, it is preferable that SNL for SSC
is smaller than that for RSC. Only SNL with BARS satisfies
this condition.

Next, the dependence of SNL for RSC on the number n
of excitatory neurons observed is shown in Figures 14A and
14C. SNL with BARS and the gaussian filter, are shown in
Figures 14A and 14C, respectively. As shown in Figure 14A,
SNL decreased as n decreased. It was also clear that the
results obtained with large values of N had large values of
SNL; this was the case even for small values of n. These
results also seem intuitively plausible because chaos will be
lost as the number n of observed neurons decreases. This
also suggests that SNL with BARS satisfies the third condi-
tion for quantifying the strength of chaos stated in section 1.
The dependence of SNL on n for SSC is shown in Figures
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Figure 14: Dependence of the sum of nonlinearity SNL on the number n of excitatory neurons observed for (A, C) RSC and
(B, D) SSC. (A, B) SNL with BARS. (C, D) SNL with a gaussian filter.

14B and 14D. Similar dependence of SNL was observed.

5 Conclusions

In this study, I quantified the strength of chaos in the popu-
lation firing rate of a pulse-coupled neural network. N exci-
tatory neurons and N inhibitory neurons comprised the net-
work, and I observed the firing of n excitatory neurons. I
defined two classes of chaotic firing, RSC and SSC. RSC
refers to firing where the population firing rate is chaotic and
the firing of each neuron is stochastic. SSC is a special case
of RSC, where the firing rate of each neuron is much lower
than that in RSC. First, I calculated the time histogram of fir-
ings to show the variation in the population firing rate for n
excitatory neurons over time. I employed BARS and a gaus-
sian filter to smooth the time histogram of firings. To quan-
tify the strength of chaos in the smoothed time histogram of
firings, I used a nonlinear prediction method based on recon-
struction, and I defined the sum of nonlinearity SNL. I ex-
amined the dependence of SNL on N and n. I demonstrated
that SNL with BARS satisfies three properties for quantify-
ing the strength of chaos. First, it can be calculated from
spiking data only. Second, it takes large values when applied
to firings that are confirmed to be chaotic, either theoretically
or numerically. Third, it reflects the strength of chaos of the
original dynamics.

Note that this conclusion depends on the choice of the bin

size ∆ in the time histogram. When arbitrarily chosen values
of ∆ are used, even SNL with BARS would lose the above
properties. Similarly, the choice of the values of ∆ and ∆g

are also important for SNL with the gaussian filter. If an ap-
propriate method for determining ∆ and ∆g are found, even
SNL with the gaussian filter would satisfy the above proper-
ties. In this study, I found that the method for determining ∆
as proposed by Shimazaki & Shinomoto (2007) made it pos-
sible to quantify the strength of chaos appropriately using
SNL with BARS. I think that this property was realized by
the fact that the optimal ∆∗ minimizes the mean integrated
squared error between the underlying spiking rate and the its
estimator (Shimazaki & Shinomoto, 2007). However, further
studies would be required to verify this assumption.

I used BARS as a smoothing method in order to follow
sudden changes in the time histogram of firings. Compari-
son with other methods for estimating the time-varying firing
rate, such as the multiscale analysis (Ramezan et al., 2014),
is a future prospect.

When N is excessively small, the strength of chaos would
become small, because chaos breaks due to the finite-size
effect. In contrast, if N is sufficiently large, it might be pos-
sible to find chaos even when the number n of excitatory
neurons observed is small. In fact, as shown in Figure 14A,
a somewhat large SNL was observed with N = 10, 0000 and
n = 100. For physiological experiments, it is important to
develop a method for finding chaos at smaller values of n.
To that end, it might be effective to utilize firing over a much
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longer range of time. The development of this method will
be addressed in future research.

A Fokker-Planck equation

To analyze the average dynamics of the network, I use the
Fokker-Planck equations (Kanamaru & Aihara, 2008), which
are written as

∂nE

∂t
= − ∂

∂θE
(AEnE)

+
D

2

∂

∂θE

{
BE

∂

∂θE
(BEnE)

}
, (A.1)

∂nI

∂t
= − ∂

∂θI
(AInI)

+
D

2

∂

∂θI

{
BI

∂

∂θI
(BInI)

}
, (A.2)

AE(θE , t) = (1− cos θE) + (1 + cos θE)

×(rE + gEEIE(t)− gEIII(t)),(A.3)
AI(θI , t) = (1− cos θI) + (1 + cos θI)

×(rI + gIEIE(t)− gIIII(t)

+ggapIgap(θI , t)), (A.4)
BE(θE , t) = 1 + cos θE , (A.5)
BI(θI , t) = 1 + cos θI , (A.6)

Igap(θI , t) = ⟨sin θI⟩ cos θI − ⟨cos θI⟩ sin θI ,(A.7)

⟨f(θI)⟩ =

∫ 2π

0

f(θI)nI(θI , t) dθI , (A.8)

for the normalized number densities of excitatory and in-
hibitory ensembles, in which

nE(θE , t) ≡ 1

N

∑
δ(θ

(i)
E − θE), (A.9)

nI(θI , t) ≡ 1

N

∑
δ(θ

(i)
I − θI), (A.10)

in the limit of N → ∞. The probability flux for each ensem-
ble is defined as

JE(θE , t) = AEnE − D

2
BE

∂

∂θE
(BEnE),(A.11)

JI(θI , t) = AInI −
D

2
BI

∂

∂θI
(BInI), (A.12)

respectively. The probability flux at θ = π can be interpreted
as the instantaneous firing rate in this ensemble, which is
denoted as JX(t) ≡ JX(π, t) where X = E or I .
IX(t) in equation 2.3 follows a differential equation that

is written as

˙IX(t) = − 1

κX

(
IX(t)− 1

2
JX(t)

)
. (A.13)

In order to integrate the Fokker-Planck equations A.1 and
A.2 numerically, I expanded nE(θE , t) and nI(θI , t) into

Fourier series as

nE(θE , t) =
1

2π

+
∞∑
k=1

(aEk (t) cos(kθE) + bEk (t) sin(kθE)), (A.14)

nI(θI , t) =
1

2π

+

∞∑
k=1

(aIk(t) cos(kθI) + bIk(t) sin(kθI)), (A.15)

and, by substituting them, equations A.1 and A.2 were trans-
formed into a set of ordinary differential equations of aXk and
bXk , which are written as

da
(X)
k

dt
= −(rX + ĨX + 1)

k

τX
b
(X)
k

−(rX + ĨX − 1)
k

2τX
(b

(X)
k−1 + b

(X)
k+1)

− Dk

8τ2X
f(a

(X)
k )

+
πggapk

4τX
(−b1g1(b

(X)
k ) + a1g2(a

(X)
k ))δXI ,

(A.16)

db
(X)
k

dt
= (rX + ĨX + 1)

k

τX
a
(X)
k

+(rX + ĨX − 1)
k

2τX
(a

(X)
k−1 + a

(X)
k+1)

− Dk

8τ2X
f(b

(X)
k )

+
πggapk

4τX
(b1g1(a

(X)
k ) + a1g2(b

(X)
k ))δXI ,

(A.17)
f(xk) = (k − 1)xk−2 + 2(2k − 1)xk−1 + 6kxk

+2(2k + 1)xk+1 + (k + 1)xk+2, (A.18)
g1(xk) = xk−2 + 2xk−1 + 2xk + 2xk+1 + xk+2,

(A.19)
g2(xk) = xk−2 + 2xk−1 − 2xk+1 − xk+2, (A.20)

ĨX ≡ gXEIE − gXIII , (A.21)

a
(X)
0 ≡ 1

π
, (A.22)

b
(X)
0 ≡ 0, (A.23)

a
(X)
−n ≡ a(X)

n , (A.24)

b
(X)
−n ≡ −b(X)

n , (A.25)

where X = E or I . By integrating the ordinary differential
equations A.13, A.16, and A.17 numerically, the time series
of the probability fluxes JE and JI are obtained. For numeri-
cal calculations, each Fourier series was truncated at the first
40 terms.
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B Nonlinear prediction based on re-
construction

In this section, the nonlinear prediction method based on
reconstruction of dynamics is summarized (Theiler et al.,
1992; Sauer, 1994).

Let us consider a sequence {Tk} of the duration
of patterns and the delay coordinate vectors Vj =
(Tj−m+1, Tj−m+2, . . . , Tj) with the reconstruction dimen-
sion m, and let L be the number of vectors in the recon-
structed phase space Rm. For a fixed integer j0, I choose
l = βL (β < 1) points that are nearest to the point Vj0

and
denote them by Vj

k
= (Tj

k
−m+1, Tj

k
−m+2, . . . , Tj

k
)(k =

1, 2, . . . , l). I set β = 0.05 in this study. It was confirmed
that the value of β does not affect the results critically. Given
{Vj

k
}, a predictor of Tj0

for h steps ahead is defined as

pj0 (h) =
1

l

l∑
k=1

Tj
k
+h. (B.1)

With pj0 (h), the normalized prediction error (NPE) is de-
fined as

ENP (h) =
⟨(pj0 (h)− Tj0+h)

2⟩1/2

⟨(⟨Tj0
⟩ − Tj0+h)2⟩1/2

, (B.2)

where ⟨·⟩ denotes the average over j0. A small value of
ENP (h) i.e., less than 1, implies that the sequence has de-
terministic structure behind the time series because this algo-
rithm is based on the assumption that the dynamical structure
of a finite-dimensional deterministic system can be well re-
constructed by the delay coordinates of the sequence (Sauer,
1994). However, stochastic time series with large auto-
correlations can also take ENP (h) values less than 1. There-
fore, I can not conclude that there is deterministic structure
only from the magnitude of ENP (h).

To confirm the deterministic structure, the values of
ENP (h) should be compared with those of ENP (h) for
a set of surrogate data (Theiler et al., 1992). The surro-
gate data used in this study are new time series generated
from the original time series under some null hypotheses
so that the new time series preserve some statistical prop-
erties of the original data. In the present study, I use ran-
domly shuffled (RS) and amplitude adjusted Fourier trans-
formed (AAFT) surrogate data, which correspond to the null
hypothesis of an independent and identically distributed ran-
dom process and that of a linear stochastic process observed
through a monotonic nonlinear function, respectively. To
obtain AAFT surrogate data, I use TISEAN 3.0.1 (Hegger,
Kantz, & Schreiber, 1999; Schreiber & Schmitz, 2000). If
the values of ENP (h) for the original data are significantly
smaller than those of ENP (h) for the surrogate data, the null
hypothesis is rejected, and it can be concluded that there is
some possibility that the original time series has determinis-
tic structure.
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