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Abstract

The array-enhanced stochastic resonance (AESR) in the diffusively coupled FitzHugh-Nagumo

equation is investigated. The two properties of AESR, namely, the scaling of the optimal noise

intensity and the enhancement of the maximum value of the correlation coefficient as a function

of the coupling strength, are analyzed theoretically. By transforming the dynamics of N elements

into that of the mean and the deviation from it, it is found that AESR is caused by the correlation

between them. A low-dimensional model which reproduces the above properties is constructed.
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I. INTRODUCTION

In noisy nonlinear systems, stochastic resonance (SR) is a well-known phenomenon where

a weak periodic signal is enhanced by its background noise and observed in many systems,

such as bistable ring lasers, semiconductor devices, chemical reactions, and neural systems

(for reviews, see Refs. [1–4]). When a periodic signal and noise are injected to such systems

simultaneously, the signal to noise ratio (SNR) of the output signal is maximized at an

optimal noise intensity.

Generally, the neural system has several sources of fluctuations. Firstly, the receptor cells

in sensory systems [5] receive signals from the outer world, thus they are exposed to the

fluctuations of the environment. Secondly, the ion channels on the membrane of neurons are

known to be stochastic [6]. Thirdly, in the central nervous system such as the hippocampus

and the cortex, the synaptic transmission is less reliable than that of the peripheral nervous

system such as the neuromuscler junction [7–9]. Fourthly, in the cortex, the sum of synaptic

inputs from the presynaptic neurons can work as the fluctuation [10–14]. Lastly, chaos in

the neural system [15–17] might work as fluctuations in the system. Thus SR may play a

significant role in the neural system.

The theoretical works on SR in a single neuron are performed on the integrate-and-fire

model [18], the leaky integrate-and-fire model [19, 20], the FitzHugh-Nagumo model [21–23],

and the Hodgkin-Huxley model [24]. In those works, it is observed that the output SNR

[22, 24] or the peak height of the interspike interval distribution [18–21] takes a maximum

as a function of the noise intensity. Some physiological experiments reinforce the hypothesis

that the neural system utilizes SR to detect weak signals [25–29]. In Ref. [25], sinusoidally

stimulated mechanoreceptor cells of a crayfish with additive noise show the property of SR,

namely, the existence of the optimal noise intensity which maximizes the output SNR. In

Ref. [26], SR is observed in caudal photoreceptor interneurons of a crayfish by intrinsic and

not external noise.

SR in spatially extended systems is also investigated and some new features are demon-

strated [30–35]. In Ref. [31], the dependence of the normalized power norm, which measures

the correlation between the aperiodic input and the output of the system, on the noise in-

tensity by increasing the number of neurons composing the system is investigated.

In some nonlinear systems [36–38], the correlation between the input and the output takes
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a maximum as a function of not only the noise intensity but also the coupling strength, and

such a phenomenon is called array-enhanced stochastic resonance (AESR). The term AESR

is introduced by Linder et al. [37] to describe the enhancement of the output SNR of a chain

of periodically driven damped oscillators, and they found that the degree of synchronization

of the elements is also maximized when the output SNR is optimized. Similar phenomenon

is also observed in a circuit of diode resonators [38].

Though the above researches treat only the system with periodic inputs, it is known that

the coupling of the elements also enhances the “coherence” and the degree of synchronization

of the elements in the system without common periodic signals, and this phenomenon is

called array-enhanced coherence resonance [39]. Thus the array-enhancement is thought to

be a universal phenomenon independent of the input.

In the present paper, we consider the mechanism of AESR in the diffusively coupled

FitzHugh-Nagumo model. In Sec. II, the properties of AESR, namely, the scaling of the

optimal noise intensity in the strong coupling limit, and the enhancement of the correlation

between the input and the output caused by the coupling, are introduced. In Secs. III and

IV, we transform the dynamics of the network of N neurons into that of the mean and

the deviation δx(i), and construct the models which describe AESR. It is found that AESR

is caused by the correlation between the mean X and the deviation δx(i). In Sec. V, the

validity of the approximation is examined, and it is found that the nonlinear effect cannot

be neglected for large N . Conclusions and discussions are given in the final section.

II. AESR IN THE DIFFUSIVELY COUPLED FN MODEL

In the present paper, we treat the diffusively coupled FitzHugh-Nagumo (FN) model

written by

τ
dui

dt
= −vi + ui − u3

i

3
+ S(f ; t) + ηi(t) +

w

N

N∑
j=1

(uj − ui), (1)

dvi

dt
= ui − βvi + γ, (2)

S(f ; t) =



S0 if n/f ≤ t ≤ n/f + h (n = 0, 1, 2, · · ·),
0 otherwise,

(3)

〈ηi(t)ηj(t
′)〉 = Dδijδ(t− t′), (4)
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for i = 1, 2, · · · , N , where β, γ, and τ are system parameters of the elements, ui is the

variable which models the membrane potential of the i-th neuron, vi is the variable which

represents the refractoriness after the firing of the i-th neuron, S(f ; t) is a periodic pulse

train with height S0, width h, and frequency f , ηi(t) is Gaussian white noise with intensity

D which models the fluctuations in the system, and δij denotes Kronecker’s delta. Note that

the connection of the elements is diffusive, the periodic pulse train S(f ; t) is applied to all

the elements, and noises for different elements are statistically independent.

A single FN model shows a characteristic of an excitable system, namely, it has a stable

rest state ui � −1.2, and with an appropriate amount of disturbance it generates a pulse

with a characteristic magnitude of height and width. When ui takes a larger value than

1, we call that the system generates an output pulse. In the following, parameter values

β = 0.8, γ = 0.7, τ = 0.1, S0 = 0.1, f = 0.5, and h = 0.3, are used. Note that the input

pulse height S0 is so small that the system does not generate any output pulse without a

certain amount of noise, namely, the input pulse is sub-threshold.

By the symmetry of the system, the behaviors of all the elements are statistically identical,

and we regard the internal state u1(t) of the first element as the output of the system. To

measure the correlation between the input S(f ; t) and the output u1(t), let us define the

correlation coefficient C between the input and output pulse trains [40]. To incorporate the

effect of the firing delay df of the FN model, which is the time lag of the firing since an input

pulse is injected, the shift t → t− df is applied to the time series of the output pulse train.

After the shift of t, the time interval under observation is divided into n bins of the width

∆, and the number of pulses in the i-th bin is denoted as Xi and Yi for the input and output

pulses, respectively. Note that the width ∆ is sufficiently small so that Xi and Yi take the

value 0 or 1. Then X =
∑
Xi and Y =

∑
Yi are the numbers of input and output pulses

respectively, and Z =
∑
XiYi is the number of coincident pulses. The correlation coefficient

C between the input and output pulse trains is defined as

C =
Z − (XY )/n√

X(1−X/n)Y (1− Y/n)
∈ [−1, 1]. (5)

Consider the periodic input pulse train with frequency f , then

Xi =



1 for every (1/∆f)-th bins,

0 otherwise.
(6)
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If the output sequence Yi is identical with Xi, namely, if the relation Xi = Yi is satisfied for

all i, the correlation coefficient C takes the value 1. If the output series Yi has no correlation

with Xi, the correlation coefficient C takes the value 0 in the large n limit. We set ∆ = 0.5

in the following.

The dependence of the correlation coefficient C on the noise intensity D for w = 0, 0.5,

1.0, and 2.0 with N = 10 is shown in Fig. 1. The data for each w shows the typical property

C

D

0

0.04

0.08

0.12

0.16

0 0.01 0.02 0.03 0.04

w= 0
w=0.5
w=1.0
w=2.0

FIG. 1: The dependence of the correlation coefficient C on the noise intensity D for w = 0, 0.5,

1.0, and 2.0 with N = 10.

of stochastic resonance, namely, the existence of a peak of the correlation coefficient C as

a function of the noise intensity D. It is also observed that the optimal noise intensity D0

increases with the increase of the coupling strength w, and the maximum value Cpeak of C

at D = D0 also depends on w.

The dependence of the optimal noise intensity D0 on the coupling strength w for N = 10,

50, and 100 is shown in Fig. 2. For large w, it is observed that D0 converges to a value

dependent on the number N of neurons. As shown in the next section, the asymptotic value

D
(N)
0 (∞) of the optimal noise intensity for the network of N neurons satisfies

D
(N)
0 (∞) = ND

(1)
0 (∞). (7)

The dependence of Cpeak on the coupling strength w for N = 10, 50, and 100 is shown in

Fig. 3, and it is observed that Cpeak takes a maximum as a function of w. This phenomenon

where the correlation between the input and the output takes a maximum as a function of

not only the noise intensity but also the coupling strength is called array-enhanced stochastic

resonance (AESR) and observed in some nonlinear systems [36–38].
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FIG. 2: The dependence of the optimal noise intensity D0 on the coupling strength w for N = 10,

50, and 100.
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FIG. 3: The dependence of the maximum value Cpeak of the correlation coefficient C on the coupling

strength w for N = 10, 50, and 100.

In the following sections, we analyze the mechanism of AESR in the diffusively coupled

FitzHugh-Nagumo model.

III. MODEL OF AESR: APPROXIMATION 1

To analyze the mechanism of AESR, the dynamics of the coupled FN model composed

of N neurons is rewritten as

dx(i)

dt
= F (x(i)) +

w

τ
A
(
X − x(i)

)
+

1

τ
η(i), (8)

X =
1

N

N∑
i=1

x(i), (9)
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〈ηi(t)ηj(t
′)〉 = Dδijδ(t− t′), (10)

i, j = 1, 2, · · · , N,

where x(i) = (x
(i)
1 , x

(i)
2 )t = (ui, vi)

t, η(i) = (ηi, 0)
t, and A is a two dimensional diagonal matrix

with diagonal components A1 = 1 and A2 = 0. Note that F (x(i)) = (F1(x
(i)), F2(x

(i)))t with

F1(x
(i)) =

1

τ

(
−vi + ui − u3

i

3
+ S(f ; t)

)
, (11)

F2(x
(i)) = ui − βvi + γ, (12)

denotes the internal motion of the i-th neuron. Let us define the deviation δx(i) of the i-th

neuron from the mean X as

δx(i) = x(i) −X. (13)

The variables X and δx(i) obey

dX

dt
= F (X) +

1

τN

N∑
i=1

η(i) + ε, (14)

d

dt
δx(i) =

(
DF (X)− w

τ
A
)
δx(i) +

1

τ


η(i) − 1

N

N∑
j=1

η(j)


+ ξ(i) − ε, (15)

where DF (x) is the Jacobian matrix of F (x) and

ε ≡ 1

N

N∑
i=1

F (X + δx(i))− F (X) (16)

and

ξ(i) ≡ F (X + δx(i))−
(
F (X) +DF (X)δx(i)

)
(17)

are O(|δx(i)|2). Since F2 is a linear function and
∑N

i=1 δx
(i) = 0, the nonlinear terms ε and

ξ(i) can be expressed as (ε, 0)t and (ξ(i), 0)t, respectively.

For sufficiently large w, with the approximation ξ(i) = ε = 0, Eq. (15) becomes

d

dt
δx

(i)
1 = −1

τ
(w − 1 +X2

1 )δx
(i)
1 − 1

τ
δx

(i)
2 +

1

τ


ηi − 1

N

N∑
j=1

ηj


 , (18)

d

dt
δx

(i)
2 = δx

(i)
1 − βδx

(i)
2 , (19)

where β is the parameter of the FN model. As shown in Appendix A, the variance of δx
(i)
1

is estimated to be

〈(δx(i)
1 )2〉 � (1−N−1)D

2τ(w − 1 +X2
1 )
, (20)
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which justifies the approximation to neglect the nonlinear terms

ξ(i) = −1

τ


X1(δx

(i)
1 )2 +

(δx
(i)
1 )3

3


 (21)

and

ε = − 1

τN

N∑
i=1


X1(δx

(i)
1 )2 +

(δx
(i)
1 )3

3


 (22)

in Eq. (15) for large w and thus, in the large w limit, the mean dynamics of X approaches

to the dynamics of the single neuron, i.e., the dynamics governed by Eq. (14) with ε = 0.

Note that Eq. (14) with ε = 0 justifies the scaling of the asymptotic value of the optimal

noise intensity (Eq. (7)).

To analyze AESR, let us take the quadratic term in Eq. (14) into consideration by

ignoring higher order terms, i.e., we consider Eq. (14) with

ε � −X1

τN

N∑
i=1

(δx
(i)
1 )2, (23)

= −1

τ
X1(δx1)

2, (24)

where

(δx1)
2 ≡ 1

N

N∑
i=1

(δx
(i)
1 )2. (25)

As shown in Appendix B, for large N , (δx1)
2 is approximated by

(δx1)
2 � 〈(δx(i)

1 )2〉. (26)

Note that with the same accuracy of approximation (1/N)
∑
(δx

(i)
1 )3 � 0 which also supports

the approximation (23). For large enough w, Eq. (26) with Eq. (20) is approximated by

(δx1)
2 � (1−N−1)D

2τw
, (27)

which is a constant independent of t and denoted by (δx1)
2
app1 in the following.

The time series of (δx1)
2 and X1 constructed from the numerical solutions of x

(i)
1 for

N = 50, w = 10, and D = 0.125 are shown in Fig. 4. Although it is observed that (δx1)
2

largely fluctuates around its mean value, it may be plausible to compare the long time

average

(δx1)2 ≡ lim
T→∞

1

T

∫ T

0
(δx1)

2dt. (28)

of (δx1)
2 with (δx1)

2
app1. In Fig. 5, (δx1)

2
app1 and (δx1)2 for N = 10 and 50 along the curves
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FIG. 4: The time series of (δx1)2 and X1 for N = 50, w = 10, and D = 0.125.
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FIG. 5: The values of (δx1)2app1 and (δx1)2 for N = 10 and 50 along the curves in w − D plane in

Fig. 2 are plotted against w.

in w −D plane in Fig. 2 are plotted against w. It is observed that (δx1)
2
app1 well describes

the behavior of (δx1)2 for large w.

Based on the above discussions, let us describe the mean dynamics X by

dX

dt
= F (X) +

1

τ
η̂ + ε, (29)

η̂ ≡ (η̂, 0)t, (30)

ε ≡
(
−1

τ
X1(δx1)2, 0

)t

, (31)

〈η̂(t)η̂(t′)〉 =
D

N
δ(t− t′). (32)

Note that this model is derived by substituting the constant value (δx1)2 for (δx1)
2 in

Eq. (24). In the following, the system governed by Eqs. (29) and (31) is called as the
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approximation 1. The numerical simulations of the approximation 1 are performed as follows:

• Fix a set of values of w and D on the curve in the w −D plane in Fig. 2;

• Numerically obtain the value of (δx1)2 for the network of N neurons with the above

fixed w and D;

• Obtain the correlation coefficient C of X1 for the approximation 1 with the above D

and (δx1)2.

The dependences of the peak values Cpeak’s of the correlation coefficient C on the coupling

strength w of the approximation 1 and the network of N neurons are compared in Fig. 6. It

w

Cpeak

0

0.05

0.1

0.15

0.2

0 2 4 6 8 10

N=10
N=10 (approx.1)

N=50
N=50 (approx.1)

FIG. 6: The dependences of the peak values Cpeak’s of the correlation coefficient C on the coupling

strength w of the approximation 1 and the network of N neurons.

is observed that the approximation 1 does not show the enhancement of Cpeak, namely, Cpeak

of the approximation 1 always takes smaller values than that of the single neuron ∼ 0.13.

In other words, the quadratic term (δx1)
2 modeled by the constant (δx1)2 cannot reproduce

the properties of AESR. This suggests that the time dependence of (δx1)
2 is important for

the enhancement of stochastic resonance.

In the next section, we take the time dependence of (δx1)
2 into consideration by retrieving

the mean X1 in 〈(δx(i)
1 )2〉.

IV. MODEL OF AESR: APPROXIMATION 2

In this section, the approximation of (δx1)
2 by

(δx1)
2
app2 =

(1−N−1)D

2τ(w − 1 +X2
1 )

(33)
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is considered according to Eqs. (20) and (26). Note that Eq. (33) is valid only for w � 1 as

shown in Appendix A and at least w must be greater than 1 in order that the denominator

does not vanish.

Let us consider the approximation 2 governed by Eq. (29) with

ε ≡
(
−1

τ
X1(δx1)

2
app2, 0

)t

. (34)

The dependences of Cpeak’s in both the approximation 2 and the network of N neurons on w

are shown in Fig. 7. It is observed that the enhancement of Cpeak for w > 0 is qualitatively

0.1

0.12

0.14

0.16

0.18

0 2 4 6 8 10
w

Cpeak

N=10
N=10 (approx.2)

N=50
N=50 (approx.2)

FIG. 7: The dependences of Cpeak’s of the approximation 2 and network of N neurons on w.

described by the approximation 2.

From the above discussions, it can be concluded that AESR is caused by the dependence

of the term (δx1)
2 on the mean X1 of N neurons. Compared with the single neuron case,

which is also realized by Eqs. (29), (33), and (34) in the large w limit, the modification of

the system by ε is considered to make the system to fire more easily, i.e., the modification

lowers the threshold of firing of the system. The noise intensity is adjusted for the change

of w according to Fig. 2, thus the noise intensity applied to the system with w � 1.5 is

smaller than that for the single neuron (w � 1). Since the threshold of firing is lowered, the

relatively small noise enables the system to fire more coherently correlated with the periodic

input and brings an enhancement of C.

Meanwhile, as shown in Fig. 7, Cpeak of the approximation 2 still underestimates that of

the network of N neurons, and the deviation seems to grow for large N . In the next section,

we consider this effect and examine the validity of the above approximation.
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V. VALIDITY OF THE APPROXIMATION

In the above analyses, we used two approximations, namely, the linearization of the

dynamics of δx(i) (Eqs. (18) and (19)), and the neglect of the fluctuation of (δx1)
2 (Eq.

(26)). In this section, we examine the validity of these approximations.

First, we examine the validity of the linearization by investigating the magnitude of (δx1)
2

at the several points shown in Fig. 8. Three curves in Fig. 8 show the optimal noise intensity

w

0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10

D0

FIG. 8: The location (w0,D
∗
0) of the maximum of Cpeak where C attains its maximum as a function

of both D and w for several fixed values of N . Three curves show the optimal noise intensity D0

as a function of w for N = 10, 50, and 100.

D0 as a function of w for three fixed N , and the circles indicate the location (w0, D
∗
0) of the

maximum of Cpeak where C attains its maximum as a function of both D and w for several

fixed values of N (see also Fig. 3). Our concern is the validity of the linear approximation

for D and w around D∗
0 and w0. In Fig. 9, (δx1)2 with D∗

0 and w0 is plotted against N , and

it is observed that (δx1)2 increases with the increase of N with a power law ∼ N0.5 in this

range of N . This behavior of (δx1)2 is understood as follows. Since the system is driven by

Gaussian white noise, if w is fixed, (δx1)2 increases with D and (δx1)2 → ∞ as D → ∞.

On the other hand, the coupling of the elements suppresses the fluctuation of the elements

as in Eq. (33), and the balance between D and w controls the magnitude of (δx1)2. In the

range of N considered in Fig. 9, D∗
0 grows faster than the growth of w0 with N and the

dependence (δx1)2 ∼ N0.5 is observed. This dependence of (δx1)2 on N is expected to hold

for large N until its magnitude becomes large such that the nonlinear terms in Eq. (15)

cannot be neglected and the linear approximation in Eq. (18) cannot hold. Thus, for large
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FIG. 9: (δx1)2 against N at the points shown in Fig. 8.

N , the linear approximation shall not be valid.

Next, let us consider the effect of the deviation of (δx1)
2 from (δx1)

2
app2, i.e., the fluctua-

tions of (δx1)
2 under the assumption that the linear approximation in Eq. (18) is valid. If

the fluctuations of (δx1)
2 cause the deviation of the approximation 2 from the network of N

neurons, they must enhance Cpeak of the approximation 2 as shown in Fig. 7.

0

t

0.04

0.08

0 4 8 12 16

5

9

-3

-0.04

-0.08

13

1

X1

X1

(δx )2
1

(δx )app2
2

1

(δx )app2
2

1(δx )  -2
1

FIG. 10: The time series of the fluctuations of (δx1)2 for N = 50, w = 10, and D = 0.125. The

time series of X1 and (δx1)2app2 are also shown.

The time series of the fluctuations of (δx1)
2 is shown in Fig. 10, and it is observed that

the fluctuations have large intensity and cannot be neglected in comparison with (δx1)
2
app2.

The probability density function of the fluctuations of (δx1)
2 is shown in Fig. 11. As shown
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FIG. 11: The distribution of the fluctuations of (δx1)2.

in Appendix B, (δx1)
2 obeys the distribution

P2(y; t) ∝ exp

[
− N − 1

2〈(δx1)2〉
(
y − N − 3

N − 1
〈(δx1)

2〉 log y
)]

(35)

for large N . The fitting with Eq. (35) with a constant instead of time dependent 〈(δx1)
2〉 is

in good agreement with the empirical distribution. It is also observed that the distribution

is highly asymmetric, thus the fluctuations of (δx1)
2 tend to take large positive values. Note

that the large positive fluctuations of (δx1)
2 help the mean X1 to fire because the term

∝ −X1(δx1)
2 in Eq. (24) gives the positive influences to X1(< 0) in the equilibrium.

Furthermore, as shown in Appendix B, the variance of (δx1)
2 is written as

〈((δx1)
2 − 〈(δx1)

2〉)2〉 � 2

N − 1
〈(δx(i)

1 )2〉2. (36)

Equation (36) indicates that the magnitude of the fluctuations of (δx1)
2 depends on 〈(δx(i)

1 )2〉
and X1. It may be plausible to consider that the asymmetrically distributed fluctuations

with the amplitude depending on X1 enhances C and this may be one of the reasons for

the discrepancy between the approximation 2 and the full system. Moreover, the scaling

〈(δx(i)
1 )2〉 ∼ N0.5 and Eq. (36) indicate that the fluctuations of (δx1)

2 does not decay with

N , thus the fluctuations can not be neglected even if they are small compared with 〈(δx1)
2〉.

From the above discussions, it is found that neither the linearization of the dynamics

of δx(i) nor the neglect of the fluctuation of (δx1)
2 are valid for large N . To construct

more precise theories for AESR, the effects of nonlinear terms and the fluctuations must be

considered.
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VI. CONCLUSIONS AND DISCUSSIONS

The array-enhanced stochastic resonance (AESR) in the diffusively coupled FitzHugh-

Nagumo model is investigated. AESR is characterized by the following two properties,

namely, the scaling of the optimal noise intensityD
(N)
0 (∞) forN neurons with the sufficiently

large coupling strength obeying

D
(N)
0 (∞) = ND

(1)
0 (∞), (37)

and the enhancement of the maximum value Cpeak of the correlation coefficient C as a

function of the coupling strength w.

By transforming the dynamics of N neurons into that of the mean X and the devia-

tion δx(i), it is found that AESR is well described by a reduced dynamics of the mean X,

particularly by the correlation between (δx1)
2 and X1.

The validity of the approximation is examined, and it is found that neither the lineariza-

tion of the dynamics of δx(i) nor the neglect of the fluctuation of (δx1)
2 are valid for large

N . To construct more precise theories for AESR, the effects of nonlinear terms and the

fluctuations must be considered.

Note that our analyses are independent of the input, thus the above discussions are

also applicable to the array-enhancement in the system without the input, namely, array-

enhanced coherence resonance [39].

As for the information processing in the neural system, AESR gives a mechanism for an

effective regulation of the noise intensity even for the “uncontrollable” noises. As shown in

Fig. 12(a), the regulation of the noise intensity in the w−D plane is represented by a vertical

arrow, and the dependence of the correlation coefficient C on the noise intensity D along

this arrow is shown in Fig. 1. Note that the correlation coefficient C takes a maximum when

the arrow crosses the curve which shows the optimal noise intensity. On the other hand, a

horizontal arrow in Fig. 12(a) represents the regulation of the coupling strength, and the

dependence of C on the coupling strength w along this arrow is shown in Fig. 12(b). It is

shown that the correlation coefficient takes a maximum when w crosses the curve of optimal

noise intensity shown in Fig. 12(a). Thus the regulation of w might work as a mechanism

for the effective regulation of the noise intensity even for the “uncontrollable” noises in the

neural system.
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FIG. 12: (a) The dependence of the optimal noise intensity D0 on the coupling strength w for

N = 10. (b) The dependence of the correlation coefficient C on the coupling strength w for

D = 0.015 and N = 10.
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APPENDIX A: DERIVATION OF 〈(δx(i)
1 )2〉

In this appendix, we analytically derive the term 〈(δx(i)
1 )2〉 given by Eq. (20), namely,

〈(δx1)
2〉 � (1−N−1)D

2τ(w − 1 +X2
1 )
, (A1)

from the linearized stochastic differential equation

d

dt
δx1 = −1

τ
(w − 1 +X2

1 )δx1 − 1

τ
δx2 +

1

τ
η̃, (A2)
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d

dt
δx2 = δx1 − βδx2, (A3)

〈η̃(t)η̃(t′)〉 = (1−N−1)Dδ(t− t′), (A4)

where the suffix (i) which denotes the index of the neuron is omitted for simplicity.

With the vector x = (δx1, δx2)
t, Eqs. (A2) and (A3) are written as

d

dt
x = A(t)x+ f(t). (A5)

Let us denote the solution of ẋ = A(t)x as x(t) = B(t)x(0) by the solution matrix B(t).

Then, with B(t, s) ≡ B(t)B−1(s), the solution of Eq. (A5) is written as

x(t) = B(t, t0)x(t0) +
∫ t

t0
dsB(t, s)f(s). (A6)

We assume that B(t, s) rapidly converges to 0 as t − s → ∞, which enables us to neglect

the nonlinear terms ξ(i) and ε in the dynamics of δx(i) governed by Eq. (15).

With η̃ = 0, Eq. (A2) is solved to be

δx1(t) = φ(t, t0)δx1(t0)− 1

τ

∫ t

t0
dsφ(t, s)δx2(s), (A7)

where

φ(t, s) ≡ exp
[
−1

τ
(w − 1)(t− s)− 1

τ

∫ t

s
dt′X2

1 (t
′)
]
. (A8)

The assumption that B(t, s) → 0 as t − s → ∞ requires the condition that φ(t, s) → 0 as

t− s → ∞.

If the convergence of φ(t, s) to 0 as t − s → ∞ is sufficiently rapid, δx2(s) in Eq. (A7)

can be replaced by δx2(t). With this assumption, Eq. (A7) becomes

δx1(t) � φ(t, t0)δx1(t0)− ψ(t, t0)δx2(t), (A9)

ψ(t, s) ≡ 1

τ

∫ t

s
dt′φ(t, t′). (A10)

Substituting Eq. (A9) in Eq. (A3), we obtain

d

dt
δx2 = φ(t, t0)δx1(t0)− (ψ(t, t0) + β)δx2, (A11)

and it is solved as

δx2(t) = exp
[
−
∫ t

t0
ds(ψ(s, t0) + β)

]
δx2(t0)+

∫ t

t0
ds exp

[
−
∫ t

s
dt′(ψ(t′, t0) + β)

]
φ(s, t0)δx1(t0).

(A12)
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From Eqs. (A9) and (A12), for t > s, we obtain

B21(t, s) =
∫ t

s
ds′ exp

[
−
∫ t

s′
dt′(ψ(t′, s) + β)

]
φ(s′, s), (A13)

B22(t, s) = exp
[
−
∫ t

s
ds′(ψ(s′, s) + β)

]
, (A14)

B11(t, s) = φ(t, s)− ψ(t, s)B21(t, s), (A15)

B12(t, s) = −ψ(t, s)B22(t, s). (A16)

With the assumption that the convergence of φ(t, s) to 0 as t− s → ∞ is sufficiently rapid,

the lower bound s′ of the integration in Eq. (A13) can be replaced by s, and we obtain

B21(t, s) � B22(t, s)
∫ t

s
ds′φ(s′, s). (A17)

With f(t) = (η̃(t)/τ, 0)t and Eq. (A6), we obtain

δx1(t) = B11(t, t0)δx1(t0) +B12(t, t0)δx2(t0) +
1

τ

∫ t

t0
dsη̃(s)B11(t, s), (A18)

=
1

τ

∫ t

−∞
dsη̃(s)B11(t, s), (A19)

where the limit t0 → −∞ is taken, and

〈δx1(t)
2〉 =

1

τ 2

∫ t

−∞

∫ t

−∞
dsds′B11(t, s)B11(t, s

′)〈η̃(s)η̃(s′)〉, (A20)

=
D̃

τ 2

∫ t

−∞
dsB11(t, s)

2, (A21)

where D̃ ≡ (1−N−1)D.

In order to obtain an approximate form for the variance 〈δx1(t)
2〉, let us roughly evaluate

B11(t, s) by the approximation φ(t, s) ∼ e−κ(t−s) with large κ, which leads to

ψ(t, s) ∼ 1− φ(t, s)

τκ
, (A22)

B21(t, s) ∼ 1− φ(t, s)

κ
B22(t, s). (A23)

For the variance in Eq. (A21), the three terms in

B2
11 � φ2 − 2φψB21 + ψ2B2

21 (A24)

give the contributions of the magnitudes of κ−1, κ−3, and κ−4, respectively, thus we obtain

〈δx1(t)
2〉 � D̃

τ 2

∫ t

−∞
dsφ(t, s)2, (A25)

=
D̃

τ 2

∫ t

−∞
ds exp

[
−2

τ
(w − 1)(t− s)− 2

τ

∫ t

s
dt′X2

1 (t
′)
]
. (A26)
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If (w − 1)/τ is sufficiently large, by replacing X(t′) by X(t), we obtain

〈δx1(t)
2〉 � D̃

τ 2

∫ t

−∞
ds exp

[
−2

τ
(w − 1 +X2

1 (t))(t− s)
]
, (A27)

=
(1−N−1)D

2τ(w − 1 +X2
1 )
. (A28)

APPENDIX B: DISTRIBUTIONS OF δx
(i)
1 AND (δx1)2

In this section, we derive the distributions of δx
(i)
1 and (δx1)

2. As shown in Eq. (A19) in

Appendix A, δx
(i)
1 is expressed as

δx
(i)
1 � Zi − 1

N

N∑
k=1

Zk, (B1)

Zi ≡ 1

τ

∫ t

−∞
dsη(i)(s)B11(t, s), (B2)

〈η(i)(s)η(j)(s′)〉 = Dδijδ(s− s′). (B3)

From the definition of the stochastic integral [41], Eq. (B2) is modified as

Zi � 1

τ

M∑
k=1

B11(t, sk) +B11(t, sk+1)

2
[η(i)(sk+1)− η(i)(sk)], (B4)

=
M∑

k=1

akzk, (B5)

(B6)

where

ak ≡ B11(t, sk) +B11(t, sk+1)

2τ
, (B7)

zk ≡ η(i)(sk+1)− η(i)(sk). (B8)

Note that zk is a random variable which follows a Gaussian distribution with the mean 0

and the variance D∆t where ∆t ≡ sk+1 − sk. The distribution P (Z, t) of Zi is calculated as

P (Z; t) = 〈δ(Z − Zi)〉, (B9)

�
∫ M∏

j=1

[dzjP (zj)] δ

(
Z −

M∑
k=1

akzk

)
, (B10)

∝
∫ M∏

j=1

dzj exp

(
− 1

2D∆t

M∑
k=1

z2
k

)
δ

(
Z −

M∑
k=1

akzk

)
, (B11)
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=
∫ M∏

j=2

dzj exp


− 1

2D∆t




M∑
k=2

z2
k +

1

a2
1

(
Z −

M∑
k=2

akzk

)2



 , (B12)

=
∫ M∏

j=2

dzj exp


− 1

2D∆t


a

2
1 + a2

2

a2
1

(
z2 − a2

a2
1 + a2

2

(
Z −

M∑
k=3

akzk

))2





× exp


− 1

2D∆t




M∑
k=3

z2
k +

1

a2
1 + a2

2

(
Z −

M∑
k=3

akzk

)2



 , (B13)

∝
∫ M∏

j=3

dzj exp


− 1

2D∆t




M∑
k=3

z2
k +

1

a2
1 + a2

2

(
Z −

M∑
k=3

akzk

)2



 , (B14)

∝ · · · ∝ exp

[
− 1

2D∆t

Z2∑
a2

k

]
. (B15)

From the definition of ak and Eq. (A21), D∆t
∑
a2

k is written as

D∆t
∑
k

a2
k � D

τ 2

∫
dsB11(t, s)

2, (B16)

� 〈(δx(i)
1 )2〉

1−N−1
, (B17)

≡ σ2
0, (B18)

thus Zi is Gaussian following

P (Z; t) ∝ exp

(
− Z2

2σ2
0

)
(B19)

and statistically independent each other. The distribution P1(y; t) of δx
(i)
1 = Zi−(1/N)

∑
Zk

is calculated as

P1(y; t) �
∫ N∏

j=1

[dZjP (Zj; t)] δ

(
y − Zi +

1

N

N∑
k=1

Zk

)
, (B20)

∝ exp

(
− y2

2σ2
0(1−N−1)

)
, (B21)

= exp

(
− y2

2〈(δx(i)
1 )2〉

)
. (B22)

Thus it is concluded that δx
(i)
1 follows a Gaussian distribution with the mean 0 and the

variance 〈(δx(i)
1 )2〉.

Next the distribution P2(y; t) of (δx1)
2 ≡ (1/N)

∑
(δx

(i)
1 )2 is calculated as

P2(y; t) = 〈δ(y − (δx1)
2)〉, (B23)

=

〈
δ

(
y − 1

N

N∑
i=1

(δx
(i)
1 )2

)〉
, (B24)
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=

〈
δ


y − 1

N

N∑
i=1

(
Zi − 1

N

N∑
k=1

Zk

)2


〉
, (B25)

=
∫ N∏

j=1

[dZjP (Zj; t)]δ


y − 1

N

N∑
i=1

(
Zi − 1

N

N∑
k=1

Zk

)2

 . (B26)

Introducing cylindrical coordinates

h =
1

N

N∑
i=1

Zi, (B27)

r =

√√√√ 1

N

N∑
i=1

(Zi − h)2, (B28)

and N − 2 angles, Eq. (B26) is calculated as

P2(y; t) ∝
∫
dhdr rN−2δ(y − r2) exp

(
− N

2σ2
0

(r2 + h2)

)
, (B29)

∝
∫ ∞

0
dr rN−2 1

2r
δ(r −√

y) exp

(
− N

2σ2
0

r2

)
, (B30)

∝ y(N−3)/2 exp

(
− N

2σ2
0

y

)
, (B31)

= exp

[
− N

2σ2
0

(
y − N − 3

N
σ2

0 log y
)]

. (B32)

With this distribution, the mean and the variance of (δx1)
2 are calculated as

〈y〉 = (1−N−1)σ2
0 = 〈(δx(i)

1 )2〉, (B33)

〈(y − 〈y〉)2〉 =
2

N − 1
〈(δx(i)

1 )2〉2. (B34)

From Eqs. (B33) and (B34), the approximation (δx1)
2 � 〈(δx(i)

1 )2〉 is justified for large N .
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